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Immunological control of residual leukemia cells is thought to occur in patients with chronic myeloid leukemia (CML) that maintain
treatment-free remission (TFR) following tyrosine kinase inhibitor (TKI) discontinuation. To study this, we analyzed 55 single-cell
RNA and T cell receptor (TCR) sequenced samples (scRNA+TCRαβ-seq) from patients with CML (n= 13, N= 25), other cancers
(n= 28), and healthy (n= 7). The high number and active phenotype of natural killer (NK) cells in CML separated them from healthy
and other cancers. Most NK cells in CML belonged to the active CD56dim cluster with high expression of GZMA/B, PRF1, CCL3/4, and
IFNG, with interactions with leukemic cells via inhibitory LGALS9–TIM3 and PVR–TIGIT interactions. Accordingly, upregulation of
LGALS9 was observed in CML target cells and TIM3 in NK cells when co-cultured together. Additionally, we created a classifier to
identify TCRs targeting leukemia-associated antigen PR1 and quantified anti-PR1 T cells in 90 CML and 786 healthy TCRβ-sequenced
samples. Anti-PR1 T cells were more prevalent in CML, enriched in bone marrow samples, and enriched in the mature, cytotoxic
CD8+ TEMRA cluster, especially in a patient maintaining TFR. Our results highlight the role of NK cells and anti-PR1 T cells in anti-
leukemic immune responses in CML.
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INTRODUCTION
The success of TKI therapy has enabled the achievement of TFR as
the major, modern goal for patients with chronic-phase CML.
However, several clinical trials have shown that only 30–40% of
CML patients enrolled in such trials with stable deep molecular
remission can maintain TFR after TKI therapy discontinuation
[1–5], and only 20% of patients diagnosed with CML can achieve
TFR during their therapy. Therefore, there is an unmet need to
better identify the patients who can achieve this milestone and to
increase TFR rates with additional combination regimens like with
interferon-alpha (IFN-α) [6].
CML is known to be an immunologically active cancer, as even

before the TKI era, IFN-α, allogeneic hematopoietic stem cell
transplantation, and donor lymphocyte infusions offered oppor-
tunities to achieve remission [7–11]. As the quiescent CD34+

CD38-BCR-ABL1+ leukemic stem cells (LSCs) are known to be
resistant to TKI treatment in vitro [12, 13], the immunological
control or eradication of LSCs may contribute to successful TKI
cessation. Recent work by us and others has demonstrated that
higher proportion of cytotoxic CD56dim NK cells before TKI
cessation is associated with a better probability of TFR [14–18]
and CD8+ T cell abundances and phenotypes have been
associated with therapy responses [6, 9, 19].
To study the innate and adaptive immune responses in CML, we

profiled 25 samples from CML patients including samples at
diagnosis (n= 7, N= 9, where n is the number of subjects and N
the number of samples if different from n) and before and after
TKI-cessation with imatinib (n= 6, N= 16, Supplementary Fig. 1a)
with paired single-cell RNA and T cell receptor (TCR) αβ chain
sequencing (scRNA+TCRαβ-seq) and compared our data to
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different cancers (n= 29) and healthy donors (n= 7) (Supplemen-
tary Table 1) [20, 21]. Additionally, we profiled T cells specific to
leukemia-associated antigen PR1 with TCRβ-sequencing (n= 5,
N= 12) and compared these data to unsorted TCRβ-sequencing
data from CML (n= 35, N= 90) and healthy (n= 786) samples

[22]. We validated our findings with in vitro studies including the
co-culturing of immune and tumor cells (Fig. 1a).
Our high-resolution map of immune responses in CML reveals

active CD56dim CD16+ CCL4+ IFNG+ TIGIT+ NK cell phenotype
and the inhibitory LGALS9 – TIM3 and PVR – TIGIT pathways
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controlling the NK and CML cell interactions, validated also with in
vitro co-culture. Also, we provide a tool to detect anti-PR1 T cells
and show their enrichment in patients with CML in comparison to
healthy individuals and the bone marrow environment and how
their phenotype can be associated with TFR. Our results provide
insights into which aspects of anti-CML responses should be
monitored before TFR or strengthened by other immunological
therapies (e.g., anti-TIM3 therapies, IFN-α) in addition to TKIs to
increase the rates of successful TFR.

RESULTS
CML patients have NK cell biased immune repertoire in
comparison to healthy and patients with other cancers
To understand the distinctive immune responses in CML, we
compared CML to other hematological and solid cancers (Fig. 1a).
We pooled CD45+ sorted (Supplementary Fig. 2a, b), scRNA
+TCRαβ profiled blood samples from patients with CML (diagnosis
n= 4 [6], TKI induced remission n= 6, TKI discontinuation n= 6,
N= 10), and untreated renal cell carcinoma (RCC, n= 3) [20], non-
small cell lung carcinoma (NSCLC, n= 1) [20], acute myeloid
leukemia (AML, n= 11) [23], chronic lymphocytic leukemia (CLL,
n= 13) [21, 24], and healthy controls (n= 7) [25, 26] (Fig. 1a,
Supplementary Table 1).
First, we removed putative malignant cells from the data by

removing a B cell cluster that contained cells only from patients
with CLL and a myeloid cluster containing cells only from patients
with AML (no similar cluster for patients with CML). After this, we
processed 247,946 cells from these 55 CD45+ sorted peripheral
blood (PB) samples with a deep generative modeling framework
[27] and annotated the cell types with a cluster-agnostic approach
by using an automated reference-based cell type annotation with
Celltypist [28] (Fig. 1b, c). We validated the annotations with
orthogonal cluster-based methods such as analyzing canonical
markers, differentially expressed genes (DEGs), relationship to
other clusters, signature scores, and with another automated
reference-based cell type annotation SingleR [29] (Supplementary
Fig. 3a–c, DEGs in Supplementary Table 2).
The most significantly expanded immune subsets in patients

with CML (n= 10) in comparison to healthy (n= 7) included
different NK cell populations, such as the most prevalent mature
CD16+ NK cells (median out of all CD45+ 18.420% vs. 9.303%,
log2 fold-change of medians [log2FC] = 0.986, Padj= 0.00967,
Benjamini-Hochberg corrected two-sided Mann-Whitney test),
immature CD16- (median 0.92% vs 0.300%, log2FC= 1.620,
Padj= 0.00614), and NK cells not specified by Celltypist (median
3.625% vs 0.774%, log2FC= 2.228, Padj= 0.00017, Fig. 1d–e). The
proportion of NK cells remained increased also following TKI
therapy and after TKI cessation (Fig. 1e). Also, all the NK cell
phenotypes were differentially abundant across cancers (NK
CD16+ Padj= 0.0048; NK CD16- Padj= 0.021, and NK Padj= 0.048,

Benjamini-Hochberg corrected Kruskal-Wallis test), and were
upregulated in different phases of CML in comparison to other
cancers (NK CD16+ log2FC= 2.157, Padj= 0.00002; NK CD16-
log2FC= 0.754, Padj= 0.018; and NK log2FC= 0.778, Padj= 0.0178,
Benjamini-Hochberg corrected Mann-Whitney test, Fig. 1f, Sup-
plementary Fig. 4a).

T cell compartment is altered from CD8+ TEM/EMRA to
CD4+ TCM/N and TREG biased after imatinib start and remains
similar following TKI cessation
The other cell types that were expanded in patients with CML in
comparison to healthy included different B cells (memory B cells
median 0.968% vs 0.165%, log2FC= 2.553, Padj= 0.0091; naïve B
cells 3.157% vs 0.065%, log2FC= 5.602, Padj= 0.0143; and B cells
unspecified by Celltypist 0.383% vs 0.083%, log2FC= 2.206,
Padj= 0.0091), but their levels remained quite small throughout
treatment (Fig. 1d, e, Supplementary Fig. 4b).
One of the interestingly behaving cell type was the largest

CD8+ T cell population CD8+ TEM/EMRA, whose levels were
higher in CML diagnosis compared to healthy controls and other
cancers (CD8+ TEM/EMRA median 20.157% vs 5.495%, log2FC=
1.875, P= 0.0082, Padj= 0.0662), but their levels decreased
following TKI initiation (CD8+ TEM/EMRA median 20.157% vs
5.623%, log2FC= 1.842, P= 0.009, Padj= 0.133, Fig. 1d, e,
Supplementary Fig. 4b). The inverse was seen with CD4+
regulatory T cells (Treg, 0.635% vs 1.404%, log2FC=−1.145,
P= 0.038, Padj= 0.178) and CD4+ central memory / naïve T cells
(TCM/N, 8.804% vs 17.510%, log2FC=−0.992, P= 0.0095, Padj=
0.134) whose levels rose following TKI initiation (Treg 0.635% vs
1.698%, log2FC=−1.419, P= 0.038, Padj= 0.178, TCM/N 8.804%
vs 34.161%, log2FC=−1.956, P= 0.009, Padj= 0.133, Fig. 1d, e,
Supplementary Fig. 4b).
Both classical (median 1.428% vs 16.536%, log2FC=−3.534,

Padj= 0.002) and non-classical monocytes (median 0.562% vs
3.615%, log2FC=−2.685, Padj= 0.00017) were decreased in CML
patients compared to healthy controls as well as dendritic cells
(DCs, 0.410% vs 1.849%, log2FC=−2.173, Padj= 0.00085, Fig. 1d,
e, Supplementary Fig. 4b).
The findings made with the automated cell type predictions,

including expansion of NK cells, CD8+ T cells, B cells, and
depletion of monocytes in patients with CML, were validated with
cluster-based analysis (Supplementary Fig. 5a, b).

CML patients’ NK cell repertoire is enriched to active NK cell
phenotype rarely seen in healthy controls
As the automated cell type algorithms are designed to capture
coarse cell types and thus are not able to appreciate subtle
differences seen in previous NK cell-related scRNAseq publica-
tions, we selected the NK cells and performed clustering analysis
with manual annotation. From 37,983 cells, we identified 7 types
of different NK cells, which is on par with the previous publications

Fig. 1 CML patients have unique NK cell repertoire. a Schematics showing the overview of data sets, analysis, and validation and extensions.
Picture created with biorender.com. b Uniform Manifold Approximation and Projection (UMAP) representation of the pooled RNA profiles of
247,946 CD45+ single-cells including peripheral blood samples from patients with CML (diagnosis n= 4, on TKI n= 6, N= 6, off TKI n= 6,
N= 10), patients with untreated hematological cancers (CLL n= 13, AML n= 11), patients with untreated solid cancer (RCC n= 3, NSCLC
n= 1), and healthy controls (n= 7). Cells are colored based on the cluster-agnostic, reference-based method Celltypist. On the right, all
different conditions are subsampled to 5,000 cells. c The number of predicted cell types and the median proportion of cells within each
condition. Colors map to UMAP colors in b. d Differentially abundant scRNAseq populations (Padj < 0.05, Benjamini-Hochberg-corrected two-
sided Mann-Whitney test) between patients with CML from different disease phases (n= 10) and healthy controls (n= 7). The horizontal line
denotes Padj= 0.05 and the vertical lines log2 fold-change of 1 and −1. e ScRNAseq population abundances in patients with CML (diagnosis
n= 4, on TKI n= 6, N= 6, off TKI n= 6, N= 10) and healthy controls (n= 7). P-values were calculated with a two-sided Mann-Whitney test.
f ScRNAseq NK population abundances in patients with CML (diagnosis n= 4, on TKI n= 6, N= 6, off TKI n= 6, N= 10), healthy controls
(n= 7), patients with untreated hematological cancers (CLL n= 13, AML n= 11), and patients with untreated solid cancer (RCC n= 3, NSCLC
n= 1). P values were calculated with a Kruskal-Wallis test. CML=chronic myeloid leukemia, CLL=chronic lymphocytic leukemia, AML= acute
myeloid leukemia, RCC=renal cell carcinoma, NSCLC=non-small cell lung carcinoma, TKI=tyrosine kinase inhibitor. n refers to the number of
patients and N to the number of samples where it differs from n. *=P < 0.05, **=P < 0.01, ***=P < 0.001, ****=P < 0.0001.
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[30–33] and includes all different maturation stages of NK cells
(CD56bright NK → CD56dim NK → adaptive NK, Fig. 2a, b,
Supplementary Fig. 6a). The CD16+ NK cells predicted by
Celltypist were CD56dim, CD16- NK cells were CD56bright cells
and the unassigned NK cells both CD56bright and adaptive NK cells
(Supplementary Fig. 6a).

The largest phenotype, CD56dim cells with cytotoxic potential,
formed three different clusters (clusters 0, 1, and 2), which were
named following their level of presumed activation by expression
of genes related to cytotoxicity (e.g., FCGR3A/CD16, GZMA/B/M/H,
PRF1), activation (e.g., TNFRSF4/9/10/18, TIGIT, HAVCR2/TIM3), and
cytokine secretion (e.g., CCL3/4, TNF, IFNG). Interestingly, the
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cluster deemed most active (cluster 0) was enriched in patients
with CML and only seen in small quantities in healthy (median %
out of all NK cells 54.100% vs 2.610%, log2FC= 4.373, P= 0.015,
two-sided Mann-Whitney test, Fig. 2c, d).
Other NK cell clusters, like CD56bright cells (cluster 4) were

defined by expression of CD56 (NCAM1), SELL, XCL1/2, and GZMK
as previously [30–33] and formed the 5th smallest population,
whose levels arose following TKI therapy, albeit finding was
statistically insignificant. Adaptive and adaptive-like NK cells
(cluster 3 and 5), which were defined by expression of ZEB2,
KLRC2, GZMH, and lack of TCRs as in the previous publications
[30–33], were enriched in cytomegalovirus (CMV) seropositive
donors (cluster 3, cells from CMV+ 90.51% and CMV- 9.49%,
P < 2.2 × 10−16; and cluster 5 cells from CMV+ 88.70% and CMV-
11.30%, P < 2.2 × 10−16, two-sided Fisher’s exact test, Supplemen-
tary Fig. 6b). In CMV+ patients (n= 3), the adaptive NK cell cluster
(cluster 3), was abundant during diagnosis (median 5.68%), rose
on-TKI (median 15.40%), and decreased to diagnosis levels off-TKI
(median 6.33%).

NK cells have an active phenotype in long-term TFR
During imatinib treatment (on TKI samples), the level of resting NK
cells (cluster 2) increased compared to the time of diagnosis
(cluster 2, median 1.86% vs 15.80%, log2FC= 3.088, P= 0.0095,
Fig. 2d). However, after imatinib cessation, the levels of active NK
cells (cluster 0) increased (37.10% vs 51.80%, log2FC= 0.482)
resting NK cells decreased (median off-TKI 11.30%, log2FC=
0.484), but differences were not statistically significant (P > 0.05).
Interestingly, the levels of active NK cells (cluster 0) seemed to be
similarly high at diagnosis (median 37.10%), at relapse following
TKI cessation (median 69.60%), and at 1 year in TFR (median
59.10%, Supplementary Fig. 6c).
At the time of TKI cessation, the active NK cells (cluster 0) had

upregulated expression of cytotoxicity-related genes (GMZA/B/H,
PRF1), translating into a higher cytotoxicity score in patients who
relapsed compared to patients maintaining TFR (median score
0.935 vs 0.724, log2FC= 0.369, P < 2.2 × 10−16, Fig. 2e). When
comparing pre- and post TKI cessation samples, patients with TFR
had a lower number of DEGs than patients with relapse (553 vs
64). In post-TKI cessation samples from patients sustaining TFR,
CD56dim active NK cells had increased expression of GZMA/H,
CXCR4, and IFNG compared to pre-TKI cessation samples, and this
was not observed in patients who relapsed (Fig. 2f, DEGs in
Supplementary Table 2).

Immune activity is higher towards cells with higher BCR-ABL1
pathway activity
It is essential to understand how leukemic CML cells are
recognized or evaded from the immune system. To study the
interactions between CML and immune cells, we profiled CD34+
and CD34+ CD38- populations from 3 additional diagnostic phase

CML patients’ bone marrow samples. We received 8 different
clusters, annotated manually with canonical markers [34, 35] and
Nabo [36], including primitive CD34+ CD38- hematopoietic stem
cells (HSCs, clusters 2, 4, and 5), more mature common myeloid
progenitors (CMPs, clusters 3 and 6), and megakaryocytic-
erythroid progenitors (MEP, clusters 0, 1, and 7, Fig. 3a,
Supplementary Fig. 7a–c, DEGs in Supplementary Table 2). In
the CD34+ CD38- sorted samples, the percentage of cells
belonging to clusters named as HSCs (clusters 2, 5) was higher
than in CD34+ sorted samples (median of HSC named cells of all
cells 93.4% vs 33.7%, log2FC= 1.47, Supplementary Fig. 7b).
We analyzed the BCR-ABL1 pathway activity of these clusters

with DEGs between BCR-ABL1+ and BCR-ABL1- HSCs from a
previous scRNAseq study [37] (genes described in Methods). Three
out of eight clusters had higher BCR-ABL1 -scores than the other
clusters (median scores 0.377 vs 0.297, log2FC= 0.344, P < 2.2 ×
10−16, two-sided Mann-Whitney), including one HSC/MPP (cluster
4, median score 0.384) and two CMP-clusters (cluster 3 and 6,
median scores 0.424 and 0.418), suggesting that the most
primitive HSC clusters are not highly dependent on BCR-ABL1
activity in accordance with previous findings [13] (Fig. 3a).
We predicted the immune cell interactions between the BM

CML cells and the PB immune cells from other newly diagnosed
CML by calculating significant (P < 0.05, CellPhoneDB permutation
test) ligand-receptor interactions with CellPhoneDB [38] (Supple-
mentary Table 3). Interestingly, the immune system had more
predicted interactions with populations that had higher BCR-
ABL1-pathway activity (median interactions 17 vs 12.5, log2FC=
0.444, P= 3.8 × 10−5,, Fig. 3b, Supplementary Fig. 8a). The
immune cells that interacted the most with CML cells included
different myeloid cells (DCs 211 interactions, non-classical 150,
and classical monocytes 133), and different NK cell populations
(NK CD16- 96, NK CD16+ 79, NK 76, Fig. 3b).

NK cells interact with CML cells via the inhibitory LGALS9 -
HAVCR2 and PVR – TIGIT axes
Albeit the myeloid cells had the most predicted interactions with
the tumor cells, we wanted to focus on NK cells as they had come
up as top hits in our analyses of cell abundance and
transcriptomic profiles. The ligand-receptor interactions between
CD34+ LSC cells and different NK cell subpopulations could be
divided into different categories, including HLA interactions (e.g.,
HLA-E and KLRC1/2), cell adhesion molecules (e.g., SELL/SELP and
SEPLG), TRAIL (e.g., TRAIL and RIPK1), and co-stimulatory interac-
tions (e.g., CLEC2B and NKp80, Supplementary Fig. 8b). The ligand-
receptor interactions were quite uniform across different CD34+
CML cells and NK cell subpopulations, although interactions
against CD34+ CML with low BCR-ABL1 activity were scarce.
Importantly, one of the major interaction categories included

inhibitory interactions, where the most abundant involved LGALS9
encoding Galectin-9 and HAVCR2/TIM3 (Fig. 3c). LGALS9 was

Fig. 2 NK cell phenotype changes to more mature during the TKI treatment. a UMAP representation of the NK CD16+ , NK CD16-, and NK
cells identified by Celltypist, colored by manually annotated clusters or scaled expression of genes used to annotate the phenotypes. b Scaled
average expressions (avg exp) and proportion of cells expressing (pct.exp) the canonical markers used to define the clusters. Encircled dots
are differentially expressed (Padj < 0.05, Bonferroni corrected t-test) in a given cluster in comparison to other clusters. c Top: The number of NK
cells from each condition. Bottom: The median proportion of NK cell subtypes out of total NK cells within each condition. Colors in the lower
panel map to UMAP colors in a. d ScRNAseq population abundances in patients with CML (diagnosis n= 4, on TKI n= 6, N= 6, off TKI n= 6,
N= 10) and healthy controls (n= 7). P-values were calculated with a two-sided Mann-Whitney test. e Left: Differentially expressed genes
(Padj < 0.05, Bonferroni corrected t-test) in active CD56dim NK cells (cluster 0) from before TKI cessation between patients who sustain
treatment-free remission (TFR) and patients who had early relapse ( < 6 months) after cessation. Right: Cytotoxicity score of active CD56dim NK
cells (cluster 0) in baseline in patients who sustain TFR and early relapse. Note that multiple genes upregulated in patients with early relapse
were associated with cytotoxicity. f Left: Differentially expressed genes (Padj < 0.05, Bonferroni corrected t-test) in active CD56dim NK cells
(cluster 0) from after and before TKI cessation, separately in TFR and early relapse. CML=chronic myeloid leukemia, CLL = chronic lymphocytic
leukemia, AML= acute myeloid leukemia, RCC = renal cell carcinoma, NSCLC = non-small cell lung carcinoma, TKI = tyrosine kinase inhibitor.
N refers to the number of patients and N to the number of samples where it differs from n. *=P < 0.05, **=P < 0.01, ***=P < 0.001,
****=P < 0.0001.
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expressed by CD34+ LSCs with low and high BCR-ABL1 activity,
but the highest expression was found in the most primitive
CD34+ CD38- cells (cluster 2, 4 and 5), where also the inhibitory
HLA class I and II expressions were found (Fig. 3d). The highest
HAVCR2/TIM3 expression was identified in the CD56dim active

cluster (cluster 0, Fig. 3d). Although PVR was expressed by lower
levels of CML cells than LGALS9 and TIGIT lower than HAVCR2/TIM3
on NK cells, the interactions involving PVR and TIGIT were
abundant. Similarly to LGALS9, PVR was expressed by CD34+
LSCs with low and high BCR-ABL1 activity with the highest in BCR-
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ABL1+ GMP cells (cluster 3 and 6), and the highest TIGIT was
expressed by active NK cells, including CD56dim active (cluster 0)
followed by type I IFN NK cells (cluster 6, Fig. 3c, d, Supplementary
Fig. 8c).

NK cells transfer to an active phenotype when co-cultured
with CML cells
We next sought to validate and refine the identified NK cell
populations and interactions between CML and NK cells in an
experimental co-culture model. We previously examined the
transcriptomic profiles of interacting NK cells and a panel of
blood cancer cell lines [33]. To focus particularly on CML, we co-
cultured two different CML cell lines (K562 and LAMA84) with and
without primary NK cells that were either unexpanded or
expanded with IL-2 and feeder cells and profiled these 6 different
conditions with scRNAseq as previously described [33].
Most of the variance between the CML cells was explained by

the co-culture with NK cells (Fig. 4a). CML cell lines experienced a
strong IFN-γ response following the NK cell attack. The top
significant DE-genes (Padj < 0.05, Bonferroni corrected t-test)
included class I HLA genes (B2M, HLA-A/B/C/E), class II HLA genes
(HLA-DRA, HLA-DRB1, HLA-DMA), antigen processing machinery
(TAP1, TAP2), immunoproteasome genes (PSMB8/9/10), PSME1/2),
and JAK-STAT genes (STAT1, IRF1, Fig. 4b, Supplementary Table 2).
The co-culture of NK cells with CML cells induced strong
upregulation of LGALS9 on CML cells, and the top hits in the
interaction analysis included LGALS9 – TIM3 and PVR – TIGIT
(Fig. 4c). PVR was not similarly upregulated on CML cells as LGALS9
upon co-culture with NK cells. The findings were validated with
non-expanded primary NK cells, where the effects of NK cells were
even more pronounced in LAMA84 than in K562 cells (Supple-
mentary Fig. 9a–c).
Accordingly, NK cells gained an active phenotype when

cocultured with CML cells (Fig. 4d). The top significant DE-genes
(Padj < 0.05) between NK cells cultured alone and in co-culture with
CML cells were different costimulatory genes such as TNFRSF9
(4-1BB), TNFRSF18 (GITR), TNFRSF4 (OX-40), and CRTAM, but also
cytotoxicity genes like IFNG and GZMB, as also previously observed
for K562 and certain other cell lines [33]. The downregulated
genes included other cytotoxicity genes such as GNLY, CCL5, NKG7,
and GZMA (Fig. 4e, Supplementary Table 2). The expression of
LGALS9 receptor HAVCR2 (TIM-3) and PVR receptor TIGIT were not
statistically significantly altered in NK cells, possibly due to high
baseline expression (Fig. 4f). The findings were validated with the
non-expanded primary NK cells, and the active phenotype of NK
cells was seen in both LAMA84 and K562 co-cultures, but even
stronger when NK cells were co-cultured with LAMA84 cells
(Supplementary Fig. 9d–f).
In the CML LSCs from patients, the IFN-γ response signature was

the highest in the most primitive CD34+ CD38- cells with low
BCR-ABL1 activity (clusters 2, and 5) (Fig. 4g). The genes induced in
NK cells in co-culture with CML cells that were attributed with co-
stimulatory functions like TNFRSF9/4-1BB (Padj= 0.0026, Bonferroni
corrected t-test), TNFRSF18/GITR (Padj= 6.05 × 10−11), and
TNFRSF4/OX-40 (Padj= 0.0038) were significantly upregulated in

active NK cells in patients with TFR in comparison to on TKI and
relapse samples (all Padj < 0.01, Bonferroni corrected t-test).
Further, the inhibitory genes HAVCR2/TIM3 (Padj= 6.63 × 10−5)
and TIGIT (Padj= 0.00043) were downregulated in patients
maintaining TFR in comparison to relapse samples (Fig. 4h,
Supplementary Table 2).

Blocking TIM3 enhances NK cell IFN-γ secretion
To functionally test the importance of LGALS9 and TIM3
interaction in the NK cell activation, we blocked TIM3 with a
clinical grade antibody sabatolimab [39] in varying concentrations
(1, 10, 25 μg/ml) with expanded NK cells from two healthy donors
co-cultured with K562 and LAMA84 cell lines. The impact on the
NK cell phenotype was analyzed by measuring degranulation
(CD107a) and cytokine secretion (IFN-γ and TNF-α) and the cell
killing with a luciferase-based assay.
After blocking TIM3, we noted a dose-dependent increase in IFN-

γ secretion in expanded NK cells against K562 (IgG vs 10 μg/ml
vs 25 μg/ml, mean % of NK cells 5.06% vs 6.39% vs 8.47%, IgG vs
10 μg/ml P= 0.028 and IgG vs 25 μg/ml P= 0.021, paired t-test) and
LAMA84 (IgG vs 10 μg vs 25 μg, mean % of NK cells 4.69% vs 6.63%
vs 7.22%, IgG vs 10 μg/ml P= 0.042 and IgG vs 25 μg/ml P= 0.049,
Fig. 4i). The degranulation (CD107a) and TNF-α secretion remained
similar (Supplementary Fig. 10a), in keeping with previous
publications with primary CML samples [40]. The findings were
replicated in another NK cell donor (Supplementary Fig. 10b). In the
luciferase-based assay, we did not notice any enhanced killing by
expanded NK cells by blocking TIM3 in varying concentrations
against K562 or LAMA84 (Supplementary Fig. 10c).
We also tested primary sorted CD34+ cells from one CML

patient in a co-culturee with non-autologous expanded NK cells
from a healthy donor with different TIM3 antibody concentrations
(1 and 10 μg/ml). Although expanded NK cells were able to kill
CD34+ CML cells, no enhanced cell killing was noted with TIM3
blockade in CD34+ cells or leukemic stem cells CD34+ CD38-
cells (Supplementary Fig. 10d). Also, the degranulation, IFN-γ
secretion, and TNF-α secretion levels of expanded NK cells
remained similar (Supplementary Fig. 10e).

TCRs from anti-PR1 T cells show common patterns that are
exploitable by machine learning
Antigen-specific T cells are fundamental for understanding and
monitoring cancer immunity. To study antigen-specific T cells in
CML, we chose PR1, a leukemia-associated antigen from
proteinase 3 (PRTN3) and neutrophil elastase (ELANE) genes, as
anti-PR1 T cells have been associated with response to TKI [7] and
successful IFN-α discontinuation [41]. In our scRNAseq data of
CD34+ CML cells, both PRTN3 and ELANE were significantly
upregulated in CML cells with high BCR-ABL1 score (median
pooled PR1 score 0.25 vs 0.11, log2FC= 1.184, P= 5.6 × 10−6, two-
sided Mann-Whitney test, Fig. 5a).
We sorted PR1 specific CD8+ T cells from 12 samples from 6

CML patients with HLA-A*02:01 PR1-targeting peptide-major
histocompatibility complex (pMHC) tetramers, analyzed them
with TCRβ-sequencing and received 772 PR1-specific TCRβs

Fig. 3 Immune interactions are more frequent against CD34+ cells that express high BCR-ABL1 pathway activity. a UMAP representation
of the pooled RNA profiles of patients with newly diagnosed CML (n= 3) CD34+ (N= 3) and CD34+ CD38- (N= 2) sorted single-cells from the
bone-marrow, colored by manually annotated clusters or scaled expression of genes used to annotate the phenotypes or BCR-ABL1 activity
score shown in five equal quantiles. BCR-ABL1 score was calculated with differentially expressed genes between BCR-ABL1 mutated and wild-
type CML cells in Giustacchini et al. [37]. b The number of significant (P < 0.05, CellPhoneDB test) ligand-receptor interactions between CML
cells and immune cells from patients with newly diagnosed CML. c Significant (P < 0.05, CellPhoneDB test) inhibitory ligand-receptor
interactions between CML and NK cells. Ligands that are expressed on CML cells are highlighted in brown color and receptors that are
expressed on immune cells are highlighted in blue color. Interactions are shown separately with different CML CD34+ cell clusters, where CML
CD34+ clusters with high BCR-ABL1 score are highlighted in red and CD34+ with low BCR-ABL1 score are highlighted in blue. d Expression of
inhibitory ligand-receptor genes and signature scores in CML LSCs (the same UMAP representation as in Fig. 3a) and NK cells (the same UMAP
representation as in Fig. 2a). n refers to the number of patients and N to the number of samples where it differs from n.
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(Fig. 5b). Even though the PR1-epitope is the same in all
individuals, we found that the TCRs recognizing it differ largely.
Approximately only one-third of the PR1-specific TCRs had exact
matches in a previously published cohort of 786 healthy donors’
TCR repertoire [22] (Supplementary Fig. 11a).

As 2/3 of the PR1-specific sequences were private to individuals,
it hinders the direct identification of anti-PR1 clonotypes from
samples where no anti-PR1 enrichment is done. However, we
reasoned that at least a subgroup of PR1-specific TCRs could share
amino acid level similarities across patients and thus grouped
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TCRs with an unsupervised algorithm GLIPH2 [42]. We found that
231/772 of anti-PR1 TCRs shared peptide motifs, showing that
there are common patterns of how PR1 is recognized by the
T cells across patients (Fig. 5c, full GLIPH2 results in Supplementary
Table 4).
Albeit GLIPH2 was useful as it identified anti-PR1 TCR motifs,

GLIPH2 cannot be used as a predictive model per se. Therefore, we
used our recently described method TCRGP [43] to train a
machine learning classifier to detect PR1-specific TCRs from
previously unseen data, where no PR1-sorting has been done. We
used the identified 231 PR1-specific TCRs and 462 non-specific
TCRs as controls to train a PR1-specific classifier with TCRGP, a
framework that is used widely in TCR-prediction tasks [44–47]. In
10-fold cross-validation, we received a mean area under the curve
(AUROC) of 0.902 for detecting anti-PR1 TCR sequences, providing
us with a tool to identify anti-PR1 specific TCRs (Fig. 5d). Our
TCRGP model uses only the CDR3β, thus focusing on the epitope
rather than the HLA-molecule which is within more close
proximity of the Vβ and Jβ parts of the TCR [48].

Anti-PR1 T-cells are found more commonly in CML than in
healthy, expanded in bone marrow, and elevated by dasatinib
treatment
We predicted PR1-specific TCRs with our TCRGP classifier from 90
TCRβ-sequenced CML samples from 35 patients and 786 healthy
samples. To compare, we also predicted antigen-specific TCRs
against common viruses (CMV, EBV, Influenza A, and HSV-2) and a
cancer-associated antigen unrelated to CML, namely MART1 [44]
(TCRGP results in Supplementary Table 4). It should be noted that
these samples were not HLA-genotyped due to sample scarcity,
but we expect balanced ratio of HLA-A*02:01 positive samples
across groups.
In comparison to healthy, CML patients had significantly

expanded anti-PR1 responses (median % of total TCR repertoire
0.743% vs 0.595%, log2FC= 0.320, P= 4.9 × 10−5, two-sided
Mann-Whitney test, Fig. 5e). In comparison to the anti-viral
antigens and the melanoma-associated antigens, the anti-PR1 was
the most expanded antigen-specific response in CML patients
(0.743% vs 0.0226%, log2FC= 5.039, P= 2.2 × 10−16, Fig. 5e,
Supplementary Fig. 11b). In patients with CML, the bone marrow
had a higher number of anti-PR1 TCR clones than peripheral blood
(median 686 vs 92, log2FC= 2.899, P= 8.9 × 10−10), and these also
occupied the larger part of the repertoire (median % of total TCR
repertoire 4.33% vs 0.743%, log2FC= 2.543, P= 1.7 × 10−8, Fig. 5f,
Supplementary Fig. 11c).
The frequency of anti-PR1 was related to different therapies in

patients with CML. Patients that received dasatinib had higher
levels of anti-PR1 T cells than patients receiving imatinib or other
2nd generation TKIs (3.30% vs 1.79%, log2FC= 0.882, P= 0.0061,
two-sided Mann-Whitney test, Fig. 5g), even though their
clonalities were not significantly different (P= 0.12, Supplemen-
tary Fig. 11d). The levels of anti-PR1 T cells remained similar when
TKI therapy was discontinued, and patients with prior dasatinib

treatment had higher levels of anti-PR1 T cells than patients that
had other TKIs prior discontinuation (2.82% vs 2.05%, log2FC=
0.460, P= 0.015, Fig. 5g).

Anti-PR1 response is more exhaustive and less cytotoxic in
early relapse than in TFR patient
To understand phenotypic differences of PR1-specific T cells in
individual patients in a TKI discontinuation setting, we utilized
paired scRNA+TCRαβ-seq and PR1-specific TCRβ-seq data from 2
patients, and thus were able to hard-match the PR1-specific
clonotypes in these samples. On-TKI, the anti-PR1 enriched TCRs
explained 3.9% of the repertoire in the TFR patient (Patient 5) and
3.2% in the early relapse patient profiled with scRNA+TCRαβ-seq
(Patient 7), which were comparable to the TCRGP predicted levels
in the TCRβ-seq samples (Supplementary Fig. 12a, b). Although
after TKI withdrawal, the abundance of anti-PR1 clones remained
similar in the different outcomes, 4/5 of the largest clones
involuted over twofold in the relapsing patient compared to 1/5 in
the TFR patient following TKI cessation attempt (Supplementary
Fig. 12c).
The phenotype of anti-PR1 was enriched to CD8+ TEM/EMRA cells

(odds-ratio OR 43.134), which were enriched in patients with CML
before TKI treatment in comparison to healthy and other cancers
(median 20.2% vs 5.37%, log2FC= 1.911, P= 0.0082, two-sided
Mann-Whitney test, Fig. 6a, b). The anti-PR1 T cells themselves
formed two clusters, where the cells from TFR patients were
CD8+ TEMRA/EFF phenotype with upregulated NK-associated genes
(cluster 0, 93.10%) while anti-PR1 T cells from early relapse patient
had more cells in a cluster of CD8+ TEM phenotype (cluster 1,
43.60%) (Fig. 6c, d, DEGs in Supplementary Table 2). Importantly,
these phenotypes were not seen in T cells specific to anti-viral
antigens predicted by TCRGP (Fig. 6e).
As with the NK cells, the phenotype of anti-PR1 T cells treatment

changed more in the patients with relapse than with TFR following
TKI cessation. After TKI cessation in TFR patients, the anti-PR1 cells
gained more cytotoxic phenotype which was not observed in the
relapsing patient (6 m vs baseline P < 0.01, 12 m vs 6m P < 0.0001,
Mann-Whitney, Fig. 6e). In the early relapse patient, the genes
associated with exhaustion (e.g., HAVCR2/TIM3, PDCD1/PD1)
decreased, and genes associated with early exhaustion (e.g.,
LAG3, TIGIT) increased, reflecting the change in the clonal structure
described above (Fig. 6e, Supplementary Fig. 12c). This was also
accompanied by the upregulation of proliferation marker MKI67,
costimulatory genes (CD28, TNFRSF9 (4-1BB), and tumor-reactivity
markers (e.g., ENTPD1/CD39, ITGAE/CD103) suggestive of an anti-
tumor response in face of rising tumor levels (Fig. 6e). These
changes were not seen in the anti-viral T cells (Fig. 6e).

DISCUSSION
In this study, we systematically compared the immune system in
CML to healthy, other hematologic (AML, CLL) and solid (RCC,
NSCLC) cancers and followed the immune responses in patients

Fig. 4 Co-culture of expanded NK cells with CML cell lines show upregulated IFN-γ response in CML cells and active phenotype of
NK cells. a UMAP representation of K562 and LAMA84 cells cultured with and without expanded NK cells, colored by the presence of
expanded NK cells. b Differentially expressed genes (Padj < 0.05, Bonferroni corrected t-test) between K562 and LAMA84 cells cultured with
and without expanded NK cells. The genes related to IFN-γ response HALLMARK-category are highlighted in teal color. c Expression of
selected co-inhibitory genes and IFN-γ response score in K562 and LAMA84 cells, calculated with the HALLMARK-category genes and shown
in five equal quantiles. d UMAP representation of expanded NK cells cultured with and without K562 or LAMA84 cells, colored by the presence
of tumor cells. e Differentially expressed genes (Padj < 0.05, Bonferroni corrected t-test) between expanded NK cells cultured with and without
K562 or LAMA84 cells. f Expression of selected co-stimulatory genes in NK cells with and without co-culture of CML cells. g Expression of IFN-γ
response score in primary CML LSCs. h Scaled average expressions (avg exp) and proportion of active NK cells expressing (pct.exp) some
genes induced in the co-culture of NK cells, in patient samples. Encircled dots are differentially expressed (Padj < 0.05, Bonferroni corrected t-
test) in a given patient group in comparison to other groups. i Proportion of expanded NK cells expressing IFN-γ after co-culture with CML cell
lines LAMA84 or K562 with or without TIM3 blocking antibody in different concentrations. P-values were calculated with a paired t-test.
*=P < 0.05, **=P < 0.01, ***=P < 0.001, ****=P < 0.0001.
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with CML discontinuing imatinib TKI treatment with different
clinical outcomes. The immune cell populations that were the
most distinctive in CML; NK cells and CD8+ T cells; were studied
more thoroughly with in vitro co-culture and antigen-specific T
cell sorting strategies.
Our analysis highlights the importance of NK cells in CML in an

unsupervised manner: they were the most abundant immune cell

cluster in CML and more expanded than in healthy or patients
with other malignancies. In a more detailed NK cell phenotyping
based on clustering, we found 7 distinct NK cell clusters that were
consistent with previously published scRNAseq data from healthy
donors [30–32]. Although the 7 different NK cell clusters were
identified in healthy donors, a striking majority (median 92.2%) of
their repertoire consisted of a CD56dim cluster (cluster 2). The
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patients with CML had far more diverse NK cell repertoire than
healthy, although the majority (60.7% in diagnosis) were
annotated as active CD56dim NK cells (cluster 0), with significantly
upregulated expression of cytotoxic markers (e.g., FCGR3A/CD16,
GMZA/B/M/H), cytokines (e.g., CCL3/4, IFNG), and activation
markers (e.g., TIGIT). This active NK cell cluster was less abundant
in the other cancers, including myeloid cancer AML, and its
upregulated genes were also seen in the co-culture of NK cells
with CML cells. In a comprehensive analysis of NK cells against 26
hematological cancer cell lines, myeloid cancers and especially
CML cell line K562 resulted in a more activated phenotype [33],
reflecting the active NK cell state found also in patients. As we
observed prominent responses of NK cells also to the LAMA84
CML cell line, our findings suggest that NK cells may react
particularly strongly towards CML cells. In fact, in a recent report,
NK cells with hyperfunctional adaptive-like features were also
found to be expanded in patients destined to good responses to
imatinib in comparison to patients who did not [49].
The NK cell repertoire was altered by imatinib therapy and TKI

cessation attempt. The active NK cells in patients with TFR
upregulated genes found in the co-culture to be costimulatory,
including TNFRSF9/4-1BB, TNFRSF18/GITR, TNFRSF4/OX-40, and
CRTAM, in comparison to on TKI and relapse samples. Additionally,
the TFR patients downregulated immune checkpoints HAVCR2/
TIM3 and TIGIT in comparison to relapse samples, indicating a
more active state of NK cells in TFR. These data add to the
importance of NK cells in controlling residual CML cells, which has
been noted in several “stop TKI” trials, where their elevated
number, maturation, and function, have been associated with a
better chance of TFR [14–16].
In the tumor-immune cell analysis, the immune system had

more predicted interactions with CD34+ cells expressing higher
than lower BCR-ABL1 pathway activity. Thus, LSCs with low BCR-
ABL1 activity may evade immune cell recognition, fitting with
clinical findings showing minute BCR-ABL1 transcript levels for
years in patients maintaining TFR [50]. Although the immune
system may not eradicate the most primitive LSCs, it is able to
control the disease, but this is not seen in all patients attempting
TFR. The quiescent LSCs with low BCR-ABL1 activity had high
upregulation of HLA class I/II and IFN-γ signature, which was
found to be induced following NK cell engagement in the co-
culture assay, indicating it as a possible immune evasion
mechanism for NK cell killing. The most common inhibitory
interactions between NK and CD34+ CML cells included LGALS9
– TIM3 and PVR and TIGIT, and the inhibitory ligands LGALS9 and
PVR were expressed in both BCR-ABL1 low and high-expressing
CD34+ cells. The upregulation of LGALS9 and to some extent
PVR in CML cells and their receptors TIM3 and TIGIT in NK cells
were observed in the co-culture of CML cell lines with NK cells.
Interestingly, blocking of TIM3 in the co-culture assays also led

to increased IFN-γ secretion although no clear effect on target
cell killing was seen. A recent study identified elevated HAVCR2/
TIM3 in CD8+ T cells from patients with relapse following TKI
withdrawal [51] as we noted in our PR1-specific CD8+ T cells. As
such, immune-checkpoint inhibitors targeting TIGIT and TIM3
are interesting molecular targets to induce more potent NK cell
engagement against CML cells, but further studies are needed
with larger cohort of primary CML cells. Several clinical trials
targeting TIM3 are currently ongoing in different myeloid
malignancies including myelodysplastic syndrome (MDS) and
AML, but not currently in CML [52]. Also other immune-
checkpoint inhibitors, like anti-LAG3, enhancing NK cells in
addition to T cells are entering the clinic [53].
In addition to NK cells, the CD8+ T cells showed a distinct

phenotype in CML in contrast to healthy and other cancers. We
generated PR1-specific TCR-sequencing data from multiple CML
patients but were not able to find exactly matching TCRs between
the patients. However, we could detect amino acid level
similarities between PR1-specific TCRs and thus were able to
generate an in silico classifier with TCRGP [43] to detect anti-PR1
TCRs from previously unseen data with high accuracy. Previously,
studies addressing antigen-specific responses have been limited
by the time and sample-consuming techniques, thus warranting a
need for novel computational methods which can then be applied
for previously profiled TCRβ-seq and scRNA+TCRαβ-seq data
[42, 43, 45–47, 54, 55].
Anti-PR1 CD8+ T cells occupied a larger part of the TCRβ-

repertoire than any other studied antigen-specific T cell repertoire,
like those against viruses (e.g., CMV, EBV, or Influenza A) or
melanoma-associated antigens (MART1). Additionally, anti-PR1
T cells were also more abundant in CML than in healthy, although
we noted that healthy individuals also harbor anti-PR1 T-cells as
has been previously described [7]. However, the proportion of
anti-MART1 T cells in melanoma was higher than anti-PR1 T cells in
CML suggesting that not all tumor-associated antigens generate
similar responses, warranting the search for other leukemia-
associated antigens and their TCRs in CML. The anti-PR1 T cells
were also more numerous and occupied a larger space of the
repertoire in bone marrow than peripheral blood, which is in line
with those in other cancers, where clonality is higher in the tumor
microenvironment than in peripheral blood [44]. It should be also
noted our prediction of anti-PR1 T cell responses from the larger
cohort were not restricted to HLA-A*02:01, possibly generating
false-positive findings.
However, scRNA+TCRαβ-seq data from HLA-A*02:01+ CML

patients showed how the anti-PR1 T cell profile is highly cytotoxic
in a patient who maintained the TFR, but larger study cohorts are
needed to confirm these results. Also, patient with a quick relapse
had a terminally exhausted phenotype of their anti-PR1 T cells,
similarly to patients who did not benefit from donor lymphocyte

Fig. 5 Monitoring antigen-specific T-cell responses in CML show expansion of anti-PR1 T cells in CML, in bone marrow, and in dasatinib-
treated patients. a The same UMAP representation as in Fig. 3A of the pooled RNA profiles of patients with newly diagnosed CML (n= 3)
CD34+ (N= 3) and CD34+ CD38- (N= 2) sorted single-cells from the bone-marrow, colored by PR1-expression score, which is a combination
of PRTN3 and ELANE genes carrying the PR1 epitope. Clusters were divided into BCR-ABL1 high and low based on the clusters in Fig. 3A. P
value was calculated with a two-sided Mann-Whitney. b Clonal structure of anti-PR1 T cell clonotype in individual samples. Each box within a
facet is a unique clonotype, where its size corresponds to its proportion in the TCR repertoire. The same clonotypes are colored with the same
color. c Network graph showing the similarity of the 231 anti-PR1 specific TCRs. Each node is a unique TCR and an edge between nodes
denotes amino-acid-level similarity determined by GLIPH2. d AUROC plot showing the 10-fold cross-validation of the 231 anti-PR1 TCRs used
as input for the TCRGP-classifier, where TPRS denotes true positive rates and FPRS denotes false positive rates. The mean of the AUROCs was
0.902. e The proportion of TCRGP predicted antigen-specific TCRs in CML (n= 48), healthy donors’ (n= 786), and in patients with melanoma
(n= 46) peripheral blood samples. The samples were subsampled to the same sequencing depth. P-value was calculated with a two-sided
Mann-Whitney test. f The proportion and number of TCRGP predicted antigen-specific TCRs in patients with CML in bone marrow (BM, n= 15)
and peripheral blood (PB, n= 24). The samples were subsampled to the same sequencing depth. P-values were calculated with a two-sided
Mann-Whitney test. g) The proportion of anti-PR1 T cells in patients with CML in diagnosis (n= 14), on TKI (n= 23), off TKI (n= 12), off TKI
relapse (n= 7). P-values were calculated with a two-sided Mann-Whitney test. n refers to the number of patients and N to the number of
samples where it differs from n. *=P < 0.05, **=P < 0.01, ***=P < 0.001, ****=P < 0.0001.
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infusion (DLI) harbored more terminally exhausted T cells [56].
Interestingly, dasatinib seemed to induce higher levels of anti-PR1
T cells than imatinib or other 2nd generation TKIs, and these
remained elevated after dasatinib withdrawal. Although dasatinib
is known to induce large granular lymphocyte (LGL) clones and
higher clonalities [19, 26, 57] via inhibition of activation-induced
cell death [6], this was irrespective of clonality levels.

The limitations in our work include the use of peripheral blood
samples for the immunological part of scRNA+TCRαβ-seq, as we
focused on longitudinal samples and bone marrow sampling is
not routine during clinical follow-up of CML. From the leukemic
cells from the bone marrow, we were not able to assess the BCR-
ABL1 status of the cells and relied on BCR-ABL1 score, which might
miss some BCR-ABL1+ cells that are in the BCR-ABL1 low clusters.
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Also, the interactions were calculated between samples from
peripheral blood and bone marrow, but we are confident that the
main interactions (PVR – TIGIT, LGALS9 – HAVCR2/TIM3) are not
artificial as these interactions were supported by our in vitro
experiments.
In conclusion, with the in-depth analysis of cellular and

molecular immune responses in CML, we identified the active
NK cells and anti-PR1 T cells that could help maintain TFR in
patients discontinuing TKI treatment. Prospective collection of
bone marrow samples in TKI discontinuation trials is warranted to
elucidate the complex interactome between residual CML LSCs
and immune subsets defined here helping more patients gain TFR.

METHODS
CML patient samples
For the scRNA+TCRαβ-seq cohort, in total 13 patients were recruited,
including 7 newly diagnosed, untreated chronic-phase CML patients from
diagnosis and 6 CML patients that were treated with imatinib and
underwent TKI discontinuation (Supplementary Table 1).
From the TKI stop patients, peripheral blood samples were collected at

the time of discontinuation, 6 or 12 months after cessation, or at the time
of relapse (patients n= 6, samples N= 20). Mononuclear cells were
separated with Ficoll-Paque centrifugation and stored in liquid nitrogen.
From the diagnosis patients, peripheral blood samples were also

collected from 4 newly-diagnosed untreated CML patients and mono-
nuclear cells were separated and stored similarly. In addition, from 3
patients bone marrow samples were collected at diagnosis, and CD34+
cells were sorted with magnetic beads and stored in liquid nitrogen.
For the TCRβ-sequencing cohorts, in total 58 samples were recruited

from patients enrolled for different CML treatment trials, and samples were
collected from multiple time points and peripheral blood or bone marrow
(Supplementary Table 1).
The study was approved by Helsinki University Central Hospital (HUCH)

ethical committee. Written informed consent was received from all
patients, and the study was conducted in accordance with the Declaration
of Helsinki.
Data for the validation cohorts were acquired as stated in Supplemen-

tary Table 1.

Single-cell RNA+ TCRαβ sequencing of CML patients
Before single-cell sequencing, blood mononuclear cells were sorted with
flow cytometry to enrich alive cells (sorting strategy shown in Supple-
mentary Fig. 2a, b). From bone marrow CD34+ cells, both CD34+ sorted
(n= 3 samples) and CD34+CD38neg sorted cells (n= 2 samples)
were used.
Single cells were partitioned using a Chromium Controller (10X

Genomics) and scRNA-seq and TCRαβ-libraries were prepared using
Chromium Single Cell 5’ Library & Gel Bead Kit (10X Genomics), as per
manufacturer’s instructions (CG000086 Rev D). Briefly, cells were
suspended in 0.04% BSA in PBS and were loaded on the Chromium
Single Cell A Chip. During the run, single-cell barcoded cDNA is generated

in nanodroplet partitions. The droplets are subsequently reversed and the
remaining steps are performed in bulk. Full-length cDNA was amplified
using 14 cycles of PCR (Veriti, Applied Biosystems). TCR cDNA was further
amplified in a hemi-nested PCR reaction using Chromium Single Cell
Human T Cell V(D)J Enrichment Kit (10X Genomics). Finally, the total cDNA
and the TCR-enriched cDNA were subjected to fragmentation, end repair
and A-tailing, adaptor ligation, and sample index PCR (14 and 9 cycles,
respectively).
The gene expression libraries were sequenced using an Illumina

NovaSeq, S1 flowcell with the following read length configuration:
Read1= 26, i7= 8, i5= 0, Read2= 91. The TCR-enriched libraries were
sequenced using an Illumina HiSeq2500 in Rapid Run mode with the
following read length configuration: Read1= 150, i7= 8, i5= 0,
Read2= 150.
The raw data was processed using Cell Ranger 3.0.0 with GRCh38 as the

reference genome with default parameters.

NK cell expansion
NK cells were expanded for 14 days using K562-mbIL21-41BBL feeder cells
as described previously [58]. On day 0, 5 million mononuclear cells,
separated from a buffy coat with Ficoll-Paque gradient centrifugation, were
suspended in 40ml RPMI-1640 with 10% heat-inactivated fetal bovine
serum (FBS), 2 mM L- glutamine, and 100 U/mL penicillin with 100mg/mL
streptomycin (PS) (referred to as R10), supplemented with 10 ng/ml
recombinant human IL-2 (R&D Systems, 202-IL-050) together with 10
million irradiated (100 Gy) K562-mbIL21-41BBL feeder cells. After 7 days of
culture and two passages, additional feeder cells were added in a 1:1 ratio.
After 14 days of culture, NK cells were purified using an NK Cell Isolation Kit
(Miltenyi) and frozen. Before the scRNAseq co-culture experiments, NK cells
were thawed and cultured in R10 supplemented with 10 ng/ml
recombinant human IL-2 (R&D Systems, 202-IL-050) 3 days before the
experiments.

Co-culture of expanded or primary NK cells with K562 or
LAMA84 cell lines with multiplexed scRNAseq readout
K562 or LAMA84 cancer cells were obtained from DSMZ (German
Collection of Microorganisms and Cell Cultures) and co-cultured at
500,000 cells/well on a 24-well plate with either expanded NK cells (1:4
effector-to-target ratio), NK cells directly extracted from mononuclear cells
from the same donor (1:2 effector-to-target ratio) or only R10 culture
medium (targets only) were added, resulting in a total volume of 1ml R10.
The cell lines were tested for mycoplasma contamination biweekly.
After 24 h at 37°C and 5% CO2, cells from each well were washed 3 times

with 10ml PBS and resuspended in 100 µl Cell Staining Buffer (BioLegend).
Additionally, 10 µl TruStain FcX blocking reagent (BioLegend) was added,
and cells were incubated for 10min. A unique TotalSeq-A hashing
antibody (BioLegend) was added to each sample (1–2 µl/1–2 µg per
sample) and cells were incubated at +4 °C for 30min covered from light.
Cells were then washed 5 times with 3 ml staining buffer and samples were
combined in 1ml staining buffer, centrifuged, resuspended in PBS+ 0.04%
bovine serum albumin (BSA), and proceeded to scRNAseq.
The Chromium Single Cell 3’ RNAseq run and library preparations were

done using the 10x Genomics Chromium Next GEM Single Cell 3’ Gene

Fig. 6 Phenotype of antigen-specific T cells show upregulated cytotoxicity and lesser exhaustion in anti-PR1 T cells in TFR in comparison
to early relapse. a The same UMAP representation as in Fig. 1A of the pooled RNA profiles of 247,946 CD45+ single-cells including peripheral
blood samples from patients with CML (diagnosis n= 4, on TKI n= 6, N= 6, off TKI n= 6, N= 10), patients with untreated hematological
cancers (CLL n= 13, AML n= 11), patients with untreated solid cancer (RCC n= 3, NSCLC n= 1), and healthy controls (n= 7), where T cells
specific to PR1 are highlighted. The odds ratios (OR) of anti-PR1 T cells present in distinct clusters were calculated with the cell types shown in
Fig. 1A. b ScRNAseq NK population abundances in patients with CML (diagnosis n= 4, on TKI n= 6, N= 6, off TKI n= 6, N= 10), healthy
controls (n= 7), patients with untreated hematological cancers (CLL n= 13, AML n= 11), and patients with untreated solid cancer (RCC n= 3,
NSCLC n= 1). P-value was calculated with a Kruskal-Wallis test. c UMAP representation of T cells with known anti-PR1 specificity from a patient
with a treatment-free remission (N= 3 samples from 3 timepoints) and a patient with early relapse (N= 2 samples from two timepoints)
following TKI discontinuation. Cells are colored based on manually annotated clusters (upper left UMAP), patients they were derived from
(lower left UMAP), or scaled expressions of genes used to annotate the phenotypes (UMAPs on the right). d Differentially expressed genes
(Padj < 0.05, Bonferroni corrected t-test) between cluster 1 and cluster 0 from Fig. 6C. e Scaled average expressions (avg exp) and proportion of
antigen-specific T cells in two patients expressing (pct.exp) canonical T cell markers. Anti-PR1 T cells were defined with tetramer staining and
the anti-viral T cells were predicted with TCRGP against CMV, EBV, HSV2, and Influenza A. CML=chronic myeloid leukemia, CLL=chronic
lymphocytic leukemia, AML= acute myeloid leukemia, RCC=renal cell carcinoma, NSCLC=non-small cell lung carcinoma, TKI=tyrosine kinase
inhibitor. n refers to the number of patients and N to the number of samples where it differs from n. *=P < 0.05, **=P < 0.01, ***=P < 0.001,
****=P < 0.0001.

J. Huuhtanen et al.

121

Leukemia (2024) 38:109 – 125



Expression version 3.1 Dual Index chemistry with the modifications
described in Stoeckius et al. [59], https://cite-seq.com/, and according to
the slightly improved protocol described in www.biolegend.com/enus/
protocols/totalseq-a-antibodies-and-cell-hashing-with10x-single-cell-3-
reagent-kit-v3-3-1-protocol. The 3’ GEX and Cell Hashing (multiplexing)
libraries were sequenced using Illumina NovaSeq 6000 system using read
lengths: 28 bp (Read 1), 10 bp (i7 Index), 10 bp (i5 Index) and 90 bp
(Read 2).

TCRβ-sequencing
TCRβ-sequencing from genomics DNA was conducted as previously
described with ImmunoSEQ assay by Adaptive Biotechnologies Corp [60].

HLA typing
All the samples were typed at the Histocompatibility Testing Laboratory,
Finnish Red Cross Blood Service accredited by European Federation for
Immunogenetics. The HLA specificities were reported based on the current
World Health Organization (WHO) nomenclature for the HLA system. The
typing for HLA-A, -B, -C, and -DRB1 loci was performed using the Luminex
bead array technology together with sequence-specific oligonucleotide
probes (Commercial LabType kits RSSO1A, RSSO1B, RSSO1C, RSSO2B1, One
Lambda, Los Angeles, CA). The bead array data were interpreted according
to the manufacturer’s recommendations using the HLA Fusion software 3.2
(One Lambda). A proportion of samples was further typed by the Sanger
sequencing method to obtain higher resolution for the HLA type
(Commercial AlleleSEQR kits 08K60-06, 08K61-06, 08K62-06, 08K63-06,
GenDx, Utrecht, Netherlands). The sequencing data were analyzed using
the SBTengine software 3.9.0.2563 (GenDx).

pMHC PR1-multimer sorting
Peripheral blood mononuclear cells (PBMCs) were obtained from 11 blood
samples from CML patients with known HLA type at HLA-A, HLA-B, and
HLA-DR loci and known CMV antibody status from a serological test. Cells
were stained with fluorophore-conjugated pMHC tetramer: Biotin-labeled
Pro5 MHC Pentamer HLA-A*02:01 epitope VLQELNVTV Code: F250-1A-E
Batch: MP/5410-06, ProImmune.

Co-culture of expanded NK cells with K562 or LAMA84 cell
lines for flow cytometry-based cytotoxicity assay
Anti-TIM3 blocking antibody, sabatolimab (MCE, HY-P99044), or IgG4
kappa (MCE, HY-P99003) was added to expanded NK cells (20,000/well) on
96 well plate for 20min on +37 °C. K562 or LAMA84 cancer cells were
added at 40,000 cells/well (0.5:1 effector-to-target ratio). R10 with
GolgiStop (BD, 554724) and anti-CD107a antibody (BD, 5558000) were
added. And final volume of 100 µl/well was obtained with R10 addition.
Plates were incubated overnight at +37 °C and 5% CO2.
Plates were washed with PBS-EDTA-BSA and resuspended to PBS-EDTA-

BSA containing fluorochrome conjugated surface antibodies; CD3 (BD,
332771, 5 µl/well), CD56 (BD, 345812, 2 µl/well), NKG2D (BD, 562365,
0.25 µl/well). After 15 min incubation in dark, plates were washed, and
incubated 20min at +4 °C with BD Cytofix/CytopermTM Fixation and
permeabilization solution (554714). Plates were washed with BD Perm/
WashTM buffer (554714) and incubated 30min at dark with intracellular
antibodies IFNg (BD, 554702, 0.5 µl/well) and TNFa (BD, 561311, 0.5 µl/well)
in PBSA-EDTA-BSA. After washing plates were measured with Novocyte
Quanteon.

Viability assay for co-culture
ONE-Glo™ Luciferase assay (Promega, E6130) was performed to monitor
cell viability after co-culture. Co-culture plates without GolgiStop and anti-
CD107a were incubated over night at +37 °C and 5% CO2. Assay was
performed following manufacturer’s instructions and plated were mea-
sured with FluoStar Omega microplate reader.

Single-cell RNA-sequencing data analysis
All cells, profiled in the study gathered from publications (Supplementary
Table 1) were subject to the same quality control. Cells with high amount
of mitochondrial transcripts (>15% of all UMI counts) or ribosomal
transcripts (>50%), cells with low or high (<100 or >4,500 genes) the
number of genes expressed, cells expressing low or high (<25% or >60%)
amount of house-keeping genes or cells with low or high read depth (<500
or >30 000) were excluded from the analyses.

To overcome the batch effect from different studies and samples, we
used a probabilistic framework to overcome different nuisance factors of
variation in an unsupervised manner with the deep generative modeling
tool scVI (0.5.0) [27]. Briefly, the transcriptome of each cell is encoded
through a nonlinear transformation into a low-dimensional, batch-
corrected latent embedding. Data were visualized with the UMAP-
dimensionality reduction [61], calculated with the RunUMAP-function
implemented in Seurat (4.0.4) [62] on the latent embeddings.
In a cluster-agnostic analysis, we predicted the cell types with Celltypist

(v.1.2.0), which is essentially a logistic regression classifier that works with a
built-in database of previously annotated RNA-sequencing data. We used
the default parameters with the previously trained “Immune_All_Low.pkl”
model available with the model. We validated the cell type predictions
with manual inspection of differentially expressed genes between the cell
types, expression of canonical markers, Euclidean distances to other
clusters, signature scores, TCR-repertoire, and with automated cell type
annotation with SingleR [29] (1.2.4) based on sorted immune subsets with
default parameters.
Additionally, we performed a cluster-based analysis, where the latent

embeddings were then used for graph-based clustering implemented in
Seurat (4.0.4) [62]. The optimal number of clusters was determined with
knee-plots on the used clustering resolution parameter as a function of
the number of clusters, where the optimal number of clusters was
determined as where the number of clusters first plateaued. Clusters
were then annotated by analysis of manual inspection of differentially
expressed genes between the cell types, expression of canonical
markers, Euclidean distances to other clusters, signature scores, and
TCR-repertoire analyses.
Differential expression analyses were performed based on the t-test, as

suggested by Soneson et al. [63]. Enrichment analysis was done by using
hypergeometric testing on GO and HALLMARK-categories from R-package
ClusterProfiler [64].
Different scores were calculated with Seurat’s AddModuleScore-

function, which is an implementation of the method suggested by
Tirosh et al. [65]. The genes used to calculate the cytotoxicity score
included IFNG, GZMA, GZMB, GZMM, GZMH, PRF1, and GNLY [66]; the
exhaustion score included CTLA4, LAG3, PDCD1, HAVCR2, and TIGIT; HLA
class I score included HLA-A, HLA-B, and HLA-C; HLA class II score
included HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPB1, HLA-DPA1,
HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, and
HLA-DRB5. The genes used to calculate the BCR-ABL1 score included
differentially expressed genes between BCR-ABL1+ and BCR-ABL1- cells
found by Gisutacchini et al. [37], including genes previously implicated
with CML (CD33, CD69, SELL, CXCR4, CDC42, MMRN1, ANZA2, CDK6, GAS2,
IFITM1, CTNNB1, NFKBIA, FOS, NCF4, MGST2, TIMP1, EZH2) [37] and novel
candidate genes (LGALS1, RXCFP1, AREG, RAB31, PRSS21, TUBB6, YBX1,
CKS2, PTPBP3, PSIP1, CDCA7, MT2A, FHL1, LAMTOR2, S100A10, LAPTM4B,
DCTPP1, STON2, SRSF2, HAT1, LOP2, PCDH9) with various implications
related to cell adhesion, cell signaling, protein binding, inflammatory
response, and mRNA splicing.
Ligand-receptor interactions were calculated with CellPhoneDB (2.0.0)

with default parameters [38] on subsampled cells from each cell type to
have the identical amount of cells for each subtype.
Demultiplexing of the co-culture assay was performed with the kernel-

density estimation of centered log-ratio-normalized hashtag-oligo (HTO)
UMI counts, which essentially estimates whether a singular HTO is
expressed more than others. Bandwidth for the kernel-density estimation
is estimated through biased cross-validation, after which the hashtag with
the highest expression is omitted from the probability estimation. The
predictions were cross-referenced to the HTODemux function in Seurat.
Only cells where expression of a singular HTO was identified (“singlets”)
were considered for further analyses.

TCR sequencing and data analysis
TCR sequencing was performed with the ImmunoSEQ platform (Adaptive
Biotechnologies). Analyses started with the TCRβ matrices provided by the
Adaptive Biotechnologies preprocessing pipeline. All data were analyzed
with VDJtools [67] (ver 1.2.1) or R (ver 4.0.2) and thus were transformed to
VDJtools-format to reduce the complexity of the data. Non-productive
clonotypes were removed from the analysis. As the healthy control data
was sequenced deeper than our CML cohort, we used a minimum
sampling depth of 40,000 reads per sample for the health data and
subsampled all samples with more reads to 40,000 reads to normalize
samples to remove biases for depth-dependent statistics. Multiple different
diversity metrics, including Shannon-Wiener, Simpson, and clonality
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indexes were calculated with CalcDiversityStats-function on both
unsampled and subsampled repertoire data.
For unsupervised detection of clonotypes that shared amino acid level

features, the web server for GLIPH2 [42] was used with CD8 as the
reference set. For supervised detection of epitope-specific clonotypes,
TCRGP for PR1-specific data was trained using 10-fold cross-validation with
default parameters with 2000 iterations and a learning rate of 0.005, and
the other models were downloaded from the original publication [43].

Statistical testing
P-values were calculated with nonparametric tests, including
Mann–Whitney test (two groups), Kruskal–Wallis test (more than two
groups), and Fisher’s exact test where the alternative hypotheses are
reported. P-values were corrected with Bonferroni (differentially expressed
genes) or with Benjamini–Hochberg (all other tests) adjustment. All
calculations were done with R (4.0.2) or Python (3.7.4). In the box plots, the
center line corresponds to the median, the box corresponds to the
interquartile range (IQR), and whiskers 1.5 × IQR, while outlier points are
plotted individually where present.

DATA AVAILABILITY
The raw scRNA+TCRαβ-seq data generated in this study are available in the
European Genome-Phenome Archive under accession code EGAS00001005044. The
processed scRNA+TCRαβ-seq data and the Seurat-objects are available at Zenodo
under 10.5281/zenodo.7330586. The bone marrow CML cell scRNA-seq data is
available GSE236233 [68]. The processed TCRβ-seq data, including the PR1-classifier
for TCRGP, are available at Zenodo under 10.5281/zenodo.7330586. All the data are
within restricted access due to GDPR and data can be accessed by placing a request
which will be reviewed promptly. The publicly available scRNA+TCRαβ-sequencing
and TCRβ-sequencing data used in this study are listed in Supplementary Table 1.

CODE AVAILABILITY
The code to reproduce the key findings is available at https://github.com/janihuuh/
cml_stop_manu.
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