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ACUTE MYELOID LEUKEMIA

Sex-associated differences in frequencies and prognostic
impact of recurrent genetic alterations in adult acute myeloid
leukemia (Alliance, AMLCG)
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Clinical outcome of patients with acute myeloid leukemia (AML) is associated with demographic and genetic features. Although the
associations of acquired genetic alterations with patients’ sex have been recently analyzed, their impact on outcome of female and
male patients has not yet been comprehensively assessed. We performed mutational profiling, cytogenetic and outcome analyses
in 1726 adults with AML (749 female and 977 male) treated on frontline Alliance for Clinical Trials in Oncology protocols. A
validation cohort comprised 465 women and 489 men treated on frontline protocols of the German AML Cooperative Group.
Compared with men, women more often had normal karyotype, FLT3-ITD, DNMT3A, NPM1 and WT1 mutations and less often
complex karyotype, ASXL1, SRSF2, U2AF1, RUNXT, or KIT mutations. More women were in the 2022 European LeukemiaNet
intermediate-risk group and more men in adverse-risk group. We found sex differences in co-occurring mutation patterns and
prognostic impact of select genetic alterations. The mutation-associated splicing events and gene-expression profiles also differed
between sexes. In patients aged <60 years, SF3B1 mutations were male-specific adverse outcome prognosticators. We conclude
that sex differences in AML-associated genetic alterations and mutation-specific differential splicing events highlight the
importance of patients’ sex in analyses of AML biology and prognostication.
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INTRODUCTION composed of both sexes and all ages [1, 2]. Several pretreatment
Acute myeloid leukemia (AML) is a biologically and clinically factors, both disease- and patient-specific, affect prognosis of AML
heterogenous disease that affects a diverse patient population patients [1-19]. The former include recurrent cytogenetic findings
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[3-11]1 and gene mutations [12-19] at diagnosis, whereas
increasing age is a well-known patient-specific predictor of worse
survival [1, 2, 9, 20]. The incidence of acquired cytogenetic and
molecular alterations and their prognostic impact vary by age [9]
and racial-ethnic identity [21, 22]. Moreover, AML is more common
in men than women [1, 23], but the reasons for this sex bias
remain largely unknown. Despite the recognition of differences in
frequencies of genetic alterations in male and female patients
with AML [23, 24], to our knowledge, no large study has yet
comprehensively assessed potential associations between patient
sex and prognostic impact of recurrent mutations. Therefore, we
assessed the frequencies of pretreatment cytogenetic and
molecular features and their impact on outcomes of male and
female patients in a cohort of 1726 adults with AML in the USA
and in a large validation cohort of 954 patients in Germany, both
treated on multicenter studies.

METHODS

Patients and treatment

We analyzed 1726 adults with de novo AML, including 749 self-reported
women and 977 men, who were treated on frontline Cancer and Leukemia
Group B (CALGB)/Alliance for Clinical Trials in Oncology (Alliance)
protocols. We limited our study to patients with de novo AML in order
to avoid the confounding effects of AML type, that is, de novo AML versus
AML evolving from an antecedent myelodysplastic syndrome versus
therapy-related AML. Self-reported patient sex was confirmed by the
results of centrally reviewed [25] metaphase karyotyping. Almost all
patients received intensive cytarabine/anthracycline-based frontline treat-
ment on CALGB/Alliance trials between 1986 and 2015 (details are
provided in the Supplementary Information). Per study protocols, no
patient received an allogeneic hematopoietic stem-cell transplantation
(HSCT) in first complete remission (CR), and patients who received an off-
protocol HSCT were excluded from analyses of disease-free (DFS) and
overall survival (OS) because their follow-up data were either missing or
incomplete. Because of differences in the treatment protocols between
patients aged <60 years and those aged 60 years and older (Supplemen-
tary Information), we performed outcome analyses separately for these age
groups. Institutional Review Board approval of all CALGB/Alliance and
German AML Cooperative Group (AMLCG) protocols was obtained before
any research was performed. Patients provided study-specific written
informed consent to participate in treatment studies. Treatment protocols
were in accordance with the Declaration of Helsinki. The AMLCG validation
cohort of 954 patients (465 female and 489 male) is described in
the Supplementary Information.

Mutational profiling

The mutational status of 80 protein-coding genes was determined
centrally at The Ohio State University by targeted amplicon sequencing
using the MiSeq platform (lllumina, San Diego, CA) [26]. Testing for FLT3
internal tandem duplications (FLT3-ITD) was performed with the Sanger
sequencing method [27]. Determination of CEBPA®?" status was done
following 2022 European LeukemiaNet (ELN) guidelines [1] using Miseq
panel and/or transcriptional profiling [28]. SF3B7 and SRSF2 were
considered as mutated if they concurred with the biology-associated
differential splicing events (see details below). Experimental details are
provided in the Supplementary Information. Preparation of samples and
sequencing in the AMLCG validation cohort followed a comparable
workflow [18]. Methods used to analyze gene expression and differential
splicing are described in the Supplementary Information.

Clinical endpoints and statistical analysis

Definitions of clinical endpoints—CR, early death, DFS and OS—are
provided in the Supplementary Information [29]. Pretreatment features of
female and male patients were compared using the Fisher's exact for
categorical variables and Wilcoxon rank-sum tests for continuous variables.
Estimated probabilities of DFS and OS were calculated using the
Kaplan-Meier method, and the log-rank test evaluated differences
between survival distributions [30]. We used logistic regression for
modeling CR and Cox proportional hazard regression for interaction and
modeling DFS and OS for univariable and multivariable outcome analyses,
which were calculated using a limited backward selection technique, and
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adjusted P values to control for per family error rate. All analyses were
performed by the Alliance Statistics and Data Center on a database locked
on June 6, 2021, using SAS 9.4, TIBCO Spotfire S+ 8.2 and GraphPad
Prism 9.

RESULTS

Clinical and molecular characteristics of AML patients with
respect to sex

Our analysis of pretreatment characteristics in the CALGB/Alliance
cohort revealed that female patients tended to be younger
(median age, 51 vs 54 years, P = 0.06), and had higher white blood
cell counts (median, 26.0 vs 222 x 10°/L, P=0.009) and
percentages of bone marrow blasts (median, 68% vs 65%,
P =0.04). Females had also more often cytogenetically normal
AML (CN-AML; 52% vs 42%, P <0.001), and less often complex
karyotype (8% vs 12%, P=0.005; Supplementary Table 1).
Mutational analysis revealed that female patients harbored more
often DNMT3A (P<0.001), NPM1 (P<0.001) and WT1 (P=0.02)
mutations as well as FLT3-ITD (P=0.03), and less often ASXLT
(P<0.001), SRSF2 (P <0.001), U2AF1 (P=0.001), RUNXT (P = 0.04),
or KIT (P=0.05) mutations (Table 1). Notably, all aforementioned
genes are located in autosomal chromosomes. We also observed
sex-associated differences in the frequencies of mutations in
genes categorized into the major AML-associated functional
groups, that included female patients having a higher frequency
of mutations in methylation-related genes (51% vs 46%, P = 0.02)
and male patients having a higher frequency of mutations in
genes involving chromatin remodeling (23% vs 18%, P=0.02),
spliceosome (22% vs 11%, P < 0.001), and, by trend, transcription
factors (28% vs 24%, P = 0.06); men also harbored myelodysplasia-
related gene mutations more often than women (37% vs 27%,
P <0.001; Table 2).

To validate the observed sex-associated differences, we com-
pared the frequencies of cytogenetic findings (Supplementary
Table 1) and gene mutations in patients from AMLCG (Tables 1 and
2). The results were largely concordant, with CN-AML and all
mutations, except KIT and WTT mutations, which differed between
males and females among CALGB/Alliance patients being also
significantly different in the AMLCG cohort. However, in the latter
patient population, females also less often carried EZH2 (P = 0.005),
SMCTA (P=0.003) and STAG2 (P < 0.001) mutations and mutations
in the cohesion complex genes (P < 0.001) than males.

The proportions of patients assigned to genetic-risk groups in
the 2022 ELN classification [1] also differed between sexes. In the
CALGB/Alliance cohort, a higher percentage of female patients
was categorized in the intermediate-risk group (30% vs 20%) and
a lower percentage of women was included in the adverse-risk
group (31% vs 44%, Supplementary Table 1).

Sex-associated differences in co-occurring molecular
alterations

We next compared patterns of co-occurring recurrent mutations in
male and female patients and differences between sexes (Pearson
correlation <0.2 and P<0.0002 for one sex and Pearson
correlation >0.03 and P> 0.5). We identified four gene mutation
pairs, including NRAS/BCOR, U2AF1/CBL, NOTCH1/BCORL1, and SF1/
SRSF2 whose presence was strongly associated with female
patients. Conversely, ASXL1/TET2, NF1/SF3B1, RUNX1/PHF®6,
RUNX1/U2AF1 and RUNX1/STAG2 were strongly positively asso-
ciated with male patients. Conversely, WT1/SRSF2 tended to be
mutually exclusive in males but less so in females (Fig. 1).

Treatment outcome of adults with AML aged <60 years with
respect to patient sex

We analyzed clinical outcomes of 381 female and 463 male AML
patients aged 17-59 years in the CALGB/Alliance cohort, for whom
frontline treatment with intensive induction chemotherapy is
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Table 1. Frequencies of mutations in single genes in female and male patients with AML treated on the CALGB/Alliance frontline protocols and

those treated on the German AML Cooperative Group frontline protocols.

Gene

ASXL1, n (%)
Mutated
Wild-type

BCOR, n (%)
Mutated
Wild-type

BCORL1, n (%)
Mutated
Wild-type

CBL, n (%)
Mutated
Wild-type

CEBPA®?®, n (%)
Present
Absent

DNMT3A, n (%)
Mutated
Wild-type

EZH2, n (%)
Mutated
Wild-type

FBXW?7, n (%)
Mutated
Wild-type

FLT3-ITD, n (%)
Present
Absent

FLT3-TKD, n (%)
Present
Absent

GATA1, n (%)
Mutated
Wild-type

GATA2, n (%)
Mutated
Wild-type

HNRNPK;, n (%)
Mutated
Wild-type

IDH1, n (%)
Mutated
Wild-type

IDH2, n (%)
Mutated
Wild-type

JAK1, n (%)
Mutated
Wild-type

Leukemia (2024) 38:45-57

CALGB/Alliance patients

Females
n=749

40 (5)
709 (95)

49 (7)
700 (93)

28 (4)
721 (96)

15 (2)
734 (98)

46 (6)
672 (94)

221 (30)
528 (70)

16 (2)
733 (98)

2 (<1)
744 (99)

192 (27)
530 (73)

89 (12)
653 (88)

1(<1)
679 (99)

29 (4)
720 (96)

6 (1)
743 (99)

104 (14)
645 (86)

91 (12)
658 (88)

6 (1)
743 (99)

Males
n=977

114 (12)
863 (88)

62 (6)
915 (94)

24 (2)
953 (98)

21 (2)
956 (98)

63 (7)
853 (93)

186 (19)
791 (81)

32 (3)
945 (97)

0 (0)
975 (100)

199 (22)
712 (78)

100 (10)
867 (90)

0 (0)
895 (100)

50 (5)
927 (95)

9 (1)
968 (99)

132 (14)
844 (86)

126 (13)
851 (87)

12 (1)
965 (99)

<0.001

0.92

0.15

0.87

0.29

<0.001

0.18

0.19

0.03

0.31

043

0.25

1.00

0.83

0.66

0.48

AMLCG patients
Females
n =465

19 (4)
446 (96)

26 (6)
439 (94)

11 (2)
454 (98)

7 (2)
458 (98)

200 (43)
265 (57)

10 (2)
455 (98)

1(<1)
464 (99)

161 (35)
304 (65)

60 (13)
405 (87)

0 (0)
465 (100)

18 (4)
447 (96)

7 (2)
458 (98)

41 (9)
424 (91)

63 (14)
402 (86)

2 (<1)
463 (99)

Males
n =489

79 (16)
410 (84)

42 (9)
447 (91)

15 (3)
474 (97)

16 (3)
473 (97)

148 (30)
341 (70)

28 (6)
461 (94)

1(<1)
488 (99)

136 (28)
353 (72)

59 (12)
430 (88)

1(<1)
488 (99)

20 (4)
469 (96)

7 (1)
482 (99)

44 (9)
445 (91)

77 (16)
412 (84)

2 (<1)
487 (99)

<0.001

0.08

0.56

0.09

<0.001

0.005

1.00

0.03

0.70

1.00

0.87

1.00

1.00

0.36

1.00
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Table 1. continued

Gene CALGB/Alliance patients AMLCG patients
Females Males P* Females Males P*
n=749 n=977 n =465 n =489

JAK2, n (%) 0.1 0.33
Mutated 5(1) 15 (2) 6 (1) 3(1)
Wild-type 722 (99) 931 (98) 459 (99) 486 (99)

JAK3, n (%) 1.00 0.68
Mutated 8 (1) 11 (1) 3 (1) 2 (<1)
Wild-type 741 (99) 966 (99) 462 (99) 487 (99)

KIT, n (%) 0.05 0.39
Mutated 35 (5) 68 (7) 20 (4) 30 (6)
Wild-type 698 (95) 890 (93) 451 (97) 469 (96)

KRAS, n (%) 0.55 0.58
Mutated 52 (7) 60 (6) 25 (5) 31 (6)
Wild-type 696 (93) 916 (94) 440 (95) 458 (94)

NF1, n (%) 0.70 0.25
Mutated 26 (6) 37 (7) 0 (0) 3(1)
Wild-type 420 (94) 528 (93) 465 (100) 486 (99)

NOTCH1, n (%) 0.70 0.34
Mutated 13 (2) 14 (2) 3(1) 7 (1)
Wild-type 668 (98) 881 (98) 462 (99) 482 (99)

NPM1, n (%) <0.001 <0.001
Mutated 305 (41) 276 (29) 247 (53) 153 (31)
Wild-type 441 (59) 692 (71) 218 (47) 336 (69)

NRAS, n (%) 0.90 0.12
Mutated 152 (20) 195 (20) 79 (17) 103 (21)
Wild-type 597 (80) 782 (80) 386 (83) 386 (79)

PHF6, n (%) 0.1 0.71
Mutated 20 (3) 40 (4) 13 3) 16 (3)
Wild-type 729 (97) 937 (96) 452 (97) 473 (97)

PTEN, n (%) 1.00 0.49
Mutated 5(1) 6 (1) 1 (<1) 0 (0)
Wild-type 744 (99) 971 (99) 464 (99) 489 (100)

PTPN11, n (%) 0.09 1.00
Mutated 85 (11) 86 (9) 46 (10) 49 (10)
Wild-type 664 (89) 891 (91) 419 (90) 440 (90)

RAD21, n (%) 1.00 1.00
Mutated 18 (2) 24 (2) 24 (5) 25 (5)
Wild-type 731 (98) 953 (98) 441 (95) 464 (95)

RUNX1, n (%) 0.04 <0.001
Mutated 69 (9) 122 (12) 46 (10) 88 (18)
Wild-type 680 (91) 855 (88) 419 (90) 401 (82)

SETBP1, n (%) 0.87 0.37
Mutated 15 (2) 22 (2) 1(<1) 4 (1)
Wild-type 734 (98) 955 (98) 464 (99) 485 (99)

SF1, n (%) 0.45 -
Mutated 8 (1) 7 (1) 0 (0) 0 (0)
Wild-type 741 (99) 970 (99) 465 (100) 489 (100)

SF3A1, n (%) 1.00 0.62
Mutated 7 (1) 9 (1) 2 (<1) 1(<1)
Wild-type 742 (99) 968 (99) 463 (99) 488 (99)
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Table 1. continued
Gene CALGB/Alliance patients
Females Males
n=749 n=977

SF3B1, n (%)

Mutated 23 (3) 42 (4)

Wild-type 724 (97) 935 (96)
SMCIA, n (%)

Mutated 27 (4) 42 (4)

Wild-type 722 (96) 935 (96)
SMC3, n (%)

Mutated 25 (3) 28 (3)

Wild-type 724 (97) 949 (97)
SRSF2, n (%)

Mutated 45 (6) 113 (12)

Wild-type 698 (94) 858 (88)
STAG2, n (%)

Mutated 21 (3) 39 (4)

Wild-type 728 (97) 938 (96)
TET2, n (%)

Mutated 122 (16) 141 (14)

Wild-type 627 (84) 836 (86)
TP53, n (%)

Mutated 53 (7) 88 (9)

Wild-type 696 (93) 889 (91)
U2AF1, n (%)

Mutated 18 (2) 54 (6)

Wild-type 731 (98) 923 (94)
U2AF2, n (%)

Mutated 1 (<1) 0 (0)

Wild-type 679 (99) 895 (100)
WT1, n (%)

Mutated 73 (10) 64 (7)

Wild-type 676 (90) 913 (93)

AMLCG patients

P* Females Males P*
n =465 n =489

0.20 0.28
12 (3) 19 (4)
453 (97) 470 (96)

0.54 0.003
7 (2) 24 (5)
458 (98) 465 (95)

0.58 0.87
20 (4) 20 (4)
445 (96) 469 (96)

<0.001 <0.001
23 (5) 79 (16)
442 (95) 410 (84)

0.19 <0.001
20 (4) 50 (10)
445 (96) 439 (90)

0.31 0.67
80 (17) 79 (16)
385 (83) 410 (84)

0.16 0.21
38 (8) 29 (6)
427 (92) 460 (94)

0.001 0.004
5 (1) 20 (4)
460 (99) 469 (96)

0.43 1.00
1(<1) 2 (<1)
464 (99) 487 (99)

0.02 0.92
60 (13) 62 (13)
405 (87) 427 (87)

*P values for categorical variables are from Fisher's exact test, P values for continuous variables are from the Wilcoxon rank-sum test.

currently still a standard of care. We found no significant
differences in CR and early death rates, DFS or OS between
female and male AML patients (Supplementary Table 2). There
were also no differences between sexes in CR and early death
rates or DFS in the AMLCG cohort. However, male German
patients aged 18-59 years had a shorter OS than female patients
(5-year rates, 42% vs 51%, P =0.005).

Sex-associated prognostic impact of genetic alterations in
patients aged < 60 years
Since cytogenetic and molecular genetic findings are routinely
used for risk stratification of AML patients, we assessed sex-
specific outcomes based on the 2022 ELN genetic-risk categories
[1]. Despite differences in proportions of females and males in the
intermediate- and adverse-risk groups, DFS and OS was essentially
equal within each genetic-risk group, except for longer OS of
female adverse-risk patients (P < 0.001; Supplementary Fig. 1A, B).
Next, we assessed associations of recurrent genetic alterations
with outcome of CALGB/Alliance patients. In univariable analysis
(UVA) for CR, presence of FLT3-ITD, PTPN11 and RUNXT mutations
affected outcome of only female patients (Fig. 2A), of which FLT3-
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ITD and PTPN11 mutations remained significantly associated with
CR achievement also in subsequent multivariable analysis (MVA,
Supplementary Table 3). In contrast, a normal karyotype and SF3B1
mutations were adverse predictors only in male patients in both
UVA and MVA.

For DFS in female patients, DNMT3A and WTI mutations
associated with shorter, and FLT3-TKD mutations with longer
DFS in both UVA and MVA (Fig. 2B, Supplementary Fig. 2A). While
for male patients detection of ASXL1, CEBPA®Z®, NRAS, SRSF2 and
TP53 mutations had sex-specific survival impact in UVA, only
CEBPAP?P mutations were significant in multivariable models.

In univariable analysis of OS, FLT3-TKD, DNMT3A and WT1
mutations affected outcome of only female patients (Fig. 2C) of
which, again, WT7 mutations held their significance also in
multivariable analyses (Fig. 3A). Notably, the adverse outcome
impact of female WT7-mutated patients seemed to be driven by
WT1/NPM1 co-mutated female patients (Fig. 3B, C). OS of men only
was influenced by CEBPAP?P, GATA2, KIT, NRAS, SF3B1, SRSF2,
STAG2 and U2AF1 mutations in UVA, of which SF3B7 mutations
had again sex-specific survival association in MVA, too (Fig. 3D,
Supplementary Table 3).
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Table 2.

Frequencies of gene mutations arranged in functional groups in female and male patients with AML treated on the CALGB/Alliance

frontline protocols and those treated on the German AML Cooperative Group frontline protocols.

Functional group® CALGB/Alliance patients

Females Males
n =749 n=977

Chromatin remodeling, n (%)

Mutated 134 (18) 221 (23)

Wild-type 615 (82) 756 (77)
Cohesin complex, n (%)

Mutated 87 (12) 130 (13)

Wild-type 662 (88) 847 (87)
Kinases, n (%)

Mutated 314 (44) 358 (39)

Wild-type 404 (56) 552 (61)
Methylation-related, n (%)

Mutated 385 (51) 446 (46)

Wild-type 364 (49) 531 (54)
RAS pathway, n (%)

Mutated 263 (35) 309 (32)

Wild-type 486 (65) 668 (68)
Spliceosome, n (%)

Mutated 82 (11) 210 (22)

Wild-type 662 (83) 761 (78)
Transcription factors, n (%)

Mutated 159 (24) 240 (28)

Wild-type 517 (76) 625 (72)
Tumor suppressors, n (%)

Mutated 141 (19) 184 (19)

Wild-type 608 (81) 793 (81)
Myelodysplasia-related, n (%)°

Mutated 207 (27) 358 (37)

Wild-type 538 (72) 616 (63)

AMLCG patients

P* Females Males P*
n =465 n =489

0.02 <0.001
52 (11) 129 (26)
413 (89) 360 (74)

0.31 <0.001
65 (14) 115 (24)
400 (86) 374 (76)

0.08 0.08
210 (45) 193 (39)
255 (55) 296 (61)

0.02 0.007
288 (62) 260 (53)
177 (38) 229 (47)

0.13 0.10
138 (30) 170 (35)
327 (70) 319 (65)

<0.001 <0.001
40 (9) 129 (26)
425 (91) 360 (74)

0.06 0.001
82 (18) 130 (27)
383 (82) 359 (73)

1.00 0.64
97 (21) 89 (18)
368 (79) 400 (82)

<0.001 <0.001
107 (23) 208 (43)
358 (77) 281 (57)

*P values for categorical variables are from Fisher’s exact test, P values for continuous variables are from the Wilcoxon rank-sum test.

“Chromatin remodeling is mutated if one of ASXL1, BCOR, or EZH2 is mutated. Kinases is mutated if one of FLT3-ITD, FLT3-TKD, or KIT is mutated. Methylation is
mutated if one of DNMT3A, IDH1/2, or TET2 is mutated. RAS pathway is mutated if one of CBL, KRAS, or NRAS is mutated. Spliceosome is mutated if one of SF3B1,
SRSF2, U2AF1 or ZRSR2 is mutated. Transcription is mutated if one of CEBPA, ETV6, IKZF1, GATA2 or RUNX1 is mutated. Tumor suppressor is mutated if PHF6, TP53

or WTT is mutated.

*The category “myelodysplasia-related” mutations has been included in the Table because it is used as an adverse-risk criterion in the widely adopted 2022
European LeukemiaNet genetic-risk classification [1, 44]. This category contains mutations in the SRSF2, SF3B1, RUNX1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR and

STAG2 genes.

Focusing on those sex-specific molecular alterations that held
their significance in both UV and MV models and at least 2 survival
endpoints (female: WTT mutations [DFS, OS]; male: SF3B71
mutations [CR, OS]), we tested their outcome impacts in the
AMLCG cohort.

While WTT mutations associated with a trend for inferior DFS in
female AMLCG patients, there was no association with inferior OS,
possibly suggestive of a rescue effect of more frequently used
intensive consolidation including allogeneic HSCT which is more
commonly administered in Germany (Supplementary Fig. 2B, Q).
Although limited by relatively small sample sizes, SF3B7-mutated
male patients in the AMLCG cohort also had a lower CR rate (38%
vs 72%, P = 0.04) and tended to have inferior OS (Supplementary
Fig. 3).

As SF3B1 mutations demonstrated distinct prognostic differences
and were recently added to the 2022 ELN classification as adverse-
risk outcome prognosticator (in the absence of favorable-risk genetic
markers), we compared OS of adverse-risk female and male patients
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with SF3BT mutations and OS of the remaining adverse-risk female
and male patients (i.e., without SF3B7 mutations). While male SF3B7-
mutated 2022 ELN adverse-risk patients and both female and male
adverse-risk patients without SF3B7 mutations had similarly poor
overall survival, female SF3B7-mutated adverse-risk patients had
significantly longer OS (5-year rates, 43% vs 8%, P =0.01) than other
2022 ELN adverse-risk patients (Fig. 3E).

Treatment outcome of adults with AML aged =60 years with
respect to patient sex and the sex-associated prognostic
impact of genetic alterations

Given the generally poor survival of older patients with AML, we
performed a subset outcome analyses of the AML patients aged 60
years and older included in our study. We did not find significant
differences between sexes among 524 older patients treated on the
CALGB/Alliance protocols nor among 414 older German patients
(Supplementary Table 4). There were no significant differences in
DFS or OS between female and male patients in any of the 2022 ELN
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Fig. 2 Outcomes of patients with AML aged <60 years who were treated on the CALGB/Alliance study protocols. Forest plot illustrating
univariable analyses of A complete remission, B disease-free survival and C overall survival. Depicted in the plot are all gene mutations with
sex-specific survival impact for either male or female patients in univariable analyses for the respective outcome endpoint. Results of the
corresponding multivariable analyses and markers with significance are shown in Supplementary Table 3.
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Fig. 3 Overall survival of female and male patients with AML according to their WT1, NPM1 and SF3B1 mutation status. A Overall survival
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and WTT mutation status. D Overall survival of female and male patients with and without SF3B7 mutations. E Overall survival of female and
male patients classified in the 2022 ELN adverse-risk group because of the presence of SF3B7 mutation (and lack of favorable-risk genetic
markers) and of the remaining female and male patients classified in the 2022 ELN adverse-risk group who did not have SF3B7 mutation.

genetic-risk groups, with patients in the intermediate-risk and
adverse-risk groups performing similarly poorly (Supplementary
Fig. 4A, B). Although drawing definitive conclusions from the
multivariable analyses is difficult because of the generally poor
treatment outcome of older patients with AML, we found that such
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mutations included in the 2022 ELN genetic-risk classification as
FLT3-ITD, NPM1 and TP53 mutations were among main factors
affecting CR rates and survival (Supplementary Table 5). Only in
men, DFS was also negatively affected by PTPN11 mutations and OS
by KRAS mutations.
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Sex-specific alternative splicing events and lineage-associated
gene expression patterns

To investigate the potential role of sex bias on gene and splicing
programs, we next analyzed patients with existing RNAseq data
(n=2848) to quantify alternative splicing events (ASE) and
differentially expressed genes (DEGs) associated with recurrent
gene mutations or cytogenetic findings using the AltAnalyze
workflow, including those affecting spliceosome genes and other
recurrent AML-associated genes or cytogenetic features (n = 24)
and select clinical/patient demographic variables.

To set the stage, we first determined the spectrum of mutations,
which result in common splicing impacts via supervised and
unsupervised analyses irrespective of sex, which could be verified
in independent AML cohorts (Supplementary Methods and Supple-
mentary Fig. 5A, B). Most AML-associated mutations and chromo-
some rearrangements resulted in splicing impacts, most significantly
associated with splicing-factor mutations (SRSF2-P95*%, U2AF1-S34*,
SF3B1, SF3A1, U2AF1-Q157%, SF1), common mutations (NPM1, TP53),
CN-AML, complex karyotype, and chromosome rearrangements
resulting in gene fusions involving CBFB and KMT2A (Fig. 4A, B).

Next, we compared female and male patients in each of these
defined subtypes. We considered subtypes with >17 samples and an
unadjusted P-value for these comparisons. Interestingly, we found
different magnitudes of splicing and gene-expression impacts
associated with sex in AML subtypes, with generally greater impacts
associated with ASEs versus DEGs (Fig. 4C, D). In general, splicing-
factor mutations (SRSF2-P95%, U2AF1-S34*, SF3B1, SF3A1, SF3A1, SF1)
resulted in large sex-associated differences for both ASEs and DEGs.
Notably, while it has been extensively documented that SF3B7-K700E
and functionally similar mutations result in alternative splice sites
only selected for within the presence of these mutations, examina-
tion of SF3B1-K700E and related mutation ASEs predicted sex bias for
several of previously annotated (USP25, MYO15B) and novel SF3B1-
K700E selected cryptic splice sites (AL133352.1, CNTRL, DOCK10), in
addition to non-cryptic splice sites with clear sex bias (Fig. 4E). At the
pathway level, we found that SF3B7 mutations in male patients
transcriptionally induce genes associated with integrin cell-surface
receptor-linked signaling pathways (MAP kinase, Netrin, PECAM1,
Ephrin B, interferon alpha/beta signaling, L1CAM), whereas RUNX1-
and TP53-mutated male patients induce inflammatory response
pathways (IL12, FGF, CXCR4 and TCR signaling). Further, complex
karyotype and TP53 mutations in female patients induce a distinct
set of inflammatory and immune signaling programs (Supplemen-
tary Fig. 5C, D). When we considered marker genes for hematopoie-
tic human progenitor and differentiated cell populations, we noted
distinct lineage enrichments shared by different sets of mutations. In
particular, SF3B71 (females) and KRAS (males) were enriched in
hematopoietic stem cells, MultiLin, common lymphoid precursor and
eosinophil/mast programs, whereas SF3B7 (males) and WTT (females)
induced a dominant megakaryocytic progenitors/erythroid progeni-
tors (Fig. 4F). We note that in male SF3B7-mutated patients, genes
associated with these programs represent well-defined lineage
determining factors, such as HOPX and PROM1 for hematopoietic
stem cells, ITGA2B, VWF and PF4 for megakaryocytic progenitors and
EPOR and GATAT for erythroid progenitors (Fig. 4G). Together, these
data indicate that sex contributes to both alternative splicing and
transcriptional differences among patients with splicing factor and
other dominant AML mutations.

DISCUSSION

The discovery of recurrent cytogenetic and molecular genetic
alterations has improved our understanding of AML biology and
resulted in the routine use of pretreatment genetic alterations for
risk stratification [1-19]. However, genetic changes should not be
assessed in isolation, because their effects may be influenced by
such factors as patients age [1, 2, 9, 20] and/or racial-ethnic
identity [21, 22]. Whereas female and male patients with AML
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share the vast majority of genetic information, except for at least
26 protein-coding genes located on the Y chromosome, large-
scale genomic studies of health and disease have revealed
profound differences in sex-biased gene-regulatory networks [31]
and splicing events [32] contributing to phenotypic sex
differences.

Recently, De-Morgan et al. [23] also demonstrated specific
preleukemic genes that were more frequently mutated in men
than women with AML. Consistent with previous reports, our
study found a female predominance of such most common (de
novo) AML-associated mutations as NPM1, DNMT3A and FLT3-ITD,
and a male predominance of spliccosome complex gene
mutations and other myelodysplasia-related genes, many of
which are found on the X-chromosome (BCOR, BCORL1, SMCI1A,
STAG2, ZRSR2). These findings might be interesting in the context
of the known higher incidence of AML in males compared to
females, and suggestive of sex-specific differences in the disease
biology. Interestingly, analyzing gene expression and alternative
splicing patterns first on a global scale followed by sex-specific
analyses, we identified differential splicing events that associated
with sex, as well as cell lineage, depending on the gene mutation.
Surprisingly, our data suggest that shared pathway-level impacts
for pairs of mutations exist, which tend to be associated with sex,
whereas cell-type associated impacts indicate a lineage bias in
programs, which often differ from the pathway. Although biologic
reasons for the male-specific outcome association of SF3B17
mutations are still unclear, the differential effects on cell lineages
suggested by GSEA indicate that sex-specific cell programs
influencing leukemogenesis and leukemic cell responses
may exist.

We detected male-specific association of SF3BT mutations with
higher resistance to induction chemotherapy and shorter overall
survival. Notably, SF3BT mutations, in the absence of favorable-risk
genetic markers, have recently been added as an adverse-risk
prognosticator to the 2022 ELN genetic-risk classification [1]. Our
data expand upon the work of the GenoMed4All consortium and
Maggioni et al. [33], which also demonstrated sex-specific biases
at the single-gene level in myelodysplastic syndromes (MDS) and
a male specificity for co-mutational pathways in splicing-related
genes. Our work, if confirmed, ultimately suggest that SF3B7
mutations might constitute a sex-specific prognosticator, which
could be taken into account in the future revisions of the ELN
genetic-risk classification.

The negative prognostic impact of WTT mutations has been
repeatedly reported in the past [34-39], but their association with
female sex have hitherto not been recognized. In our study, an
association of WTT mutations with women was seen only in the
CALGB/Alliance cohort, but was not observed in the AMLCG
patients. As patients treated in Europe receive allogeneic HSCT in
first CR more often, it is possible that more intensive consolidation
might alleviate the adverse prognostic impact of WTT mutations.
This discrepancy might warrant further investigation in prospec-
tive studies, to help determine the appropriate consolidation
strategy for female patients carrying WT1 mutations. Moreover,
adverse outcome of WTT-mutated women seems to be associated
with co-existence of NPM1 mutations, which was previously
suggested to confer high treatment resistance and poor survival
rates [17, 40].

Limitations of our study include the fact that we studied only
patients with de novo AML, and that the Alliance patients did not
undergo allogeneic HSCT in first CR and were almost exclusively
treated with intensive induction chemotherapy followed by
consolidation therapy. Hence, future studies are needed to assess
associations between sex and molecular features and survival in
patients undergoing allogeneic HSCT and in those receiving
emerging targeted therapies, which is particularly important in
older patients. Furthermore, we detected sex-associated differ-
ences in the frequencies of myelodysplasia-related gene
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mutations among patients diagnosed with de novo AML, not in
patients with AML evolving from an antecedent MDS whom we
did not analyze. It will be thus important to perform dedicated
analyses in patients with secondary AML evolving from MDS,
especially since sex disparities with respect to genotypes,
phenotypes and outcomes have previously been reported in
patients diagnosed with MDS [41, 42].
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In summary, our study assessed potential sex-associated
biologic and prognostic implications of genetic alterations in
large patient cohorts. Although most established genetic altera-
tions affected outcomes of both sexes, select gene mutations
were associated with patient sex. This was likely missed previously
because of routinely performed sex-pooled outcome analyses. We
identified SF3B7 mutations as a male-specific and WT1 mutations
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Fig. 4 Alternative splicing events (ASEs) segregated by mechanism of predicted regulation for recurrent mutations, gene fusions and
clinical covariates in the CALGB/Alliance RNA-Seq cohort. The extent of exon/intron A inclusion or B exclusion ASEs. The extent of unique
sex-associated ASEs C or differentially expressed genes (DEGs) D associated with each patient subtype, unique regulated events or genes
compared with all other AMLs and sex/subtype overlapping events/genes, derived from the software AltAnalyze. Green color denotes the
number of unique ASEs or DEGs in all patients with the indicated molecular genetic or cytogenetic subtype versus all other AML patients in
the cohort. Blue indicates the number of unique ASEs or DEGs in males versus females in the indicated AML subtype and red illustrates
overlap between subtype-associated ASEs or DEGs and male versus female (subtype regulated events/genes that vary according to patient
sex). E Quantification of SF3B1-mutated sex-associated alternative splicing events as percent spliced in (PSI) values for the indicated parental
exon-exon junction. F = female, M = Male. F Heatmap of gene set enrichments (GO-Elite) for known AML subtypes against human bone
marrow cell-type markers to identify lineage skewing, BM cell-type markers were derived from extensive prior human single-cell analyses [43],
to identify markers of rare hemopoietic stem cells, progenitors, and immune cell-types. Only AML subtype sex-associated gene sets with
significant enrichments are shown. G Sex-associated differentially expressed genes in SF3B7-mutated males versus females corresponding to
human bone marrow progenitor populations.

as female-specific prognosticators of poor survival in patients
treated with conventional chemotherapy. Differences in the
frequencies of AML-associated genetic alterations and mutation-
specific differential splicing events, with possible subsequent
phenotypic changes, highlight the importance of considering the
patients’ sex in analyses examining leukemia biology and
prognostic significance of genetic alterations and their role in
clinical decision-making in AML.
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