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CHRONIC MYELOPROLIFERATIVE NEOPLASMS

RAS-pathway mutations are common in patients with
ruxolitinib refractory/intolerant myelofibrosis: molecular
analysis of the PAC203 cohort
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TO THE EDITOR:
The treatment of myelofibrosis (MF), a myeloproliferative neo-
plasm (MPN) driven by JAK-STAT pathway activating mutations,
evolved with the advent of JAK inhibitors. The first-in-class agent,
ruxolitinib (RUX), a JAK1/2 inhibitor, is now standard for treatment
of splenomegaly and MF-associated symptoms [1]. However, MF is
a biologically and clinically heterogeneous disease with certain
difficult to treat patient subgroups. In particular, disease- or
treatment-associated thrombocytopenia is associated with
adverse outcomes [2, 3] and often requires RUX dose reductions
or interruptions which may limit treatment efficacy. Thrombocy-
topenic patients who discontinue RUX have a median survival of
less than 1 year [3].
Pacritinib (PAC), a JAK2/IRAK1/ACVR1 inhibitor that spares JAK1,

has shown clinical benefit in thrombocytopenic MF in the PERSIST-
1 and -2 trials [4, 5]. PAC203 was a randomized dose finding study
of PAC in primary or secondary MF patients who were refractory or
intolerant to RUX (RUX-ref/int), including patients with moderate
and severe thrombocytopenia. Patients were randomized 1:1:1
(PAC 100 mg once daily [QD], 100 mg twice daily [BID] or 200mg
BID) stratified by baseline platelet count. This study established
PAC 200mg BID as the optimal efficacious and safe dose [6] and
PAC is now FDA approved for the treatment of patients with MF
who have thrombocytopenia.
Previous studies established the adverse prognostic implica-

tions of certain somatic gene mutations in MF; specifically
mutations in epigenetic (ASXL1, EZH2) [7], splicing factor (SRSF2,
U2AF1) [7] and IDH1/IDH2 genes [7] are associated with disease
progression and shortened survival. Reduced likelihood of RUX
response has been associated with ≥3 mutations [8] but not with
mutation type [9, 10]. Shorter time to RUX failure has been
reported in those with ASXL1/EZH2 mutations [9] and reduced
time to RUX discontinuation in patients with ≥3 mutations [8].
Specific cytokine signatures have been correlated with RUX

resistance [11] suggesting possible biologically relevant pathways
(e.g. NFκB) mediating resistance. The mutation profiles of RUX-ref/
int thrombocytopenic MF patients have not been well delineated.
This represents a group with a major unmet need for effective
management strategies, and a better understanding of their
mutation profiles will assist the application of precision medicine
in this challenging group.
We therefore performed mutational analysis on a subgroup the

PAC203 cohort (110 patients at baseline and 42 patients at 24 weeks
follow-up using a 32-gene TruSeq Custom Amplicon Panel
(see Supplementary Methods). Furthermore, we interrogated
cytokine profiles to understand the relationship between inflam-
matory signatures and clinico-genomic profiles in this cohort.
Characteristics of this group was representative of the overall

PAC203 cohort [6]. Median follow-up time was 213 (95% confidence
interval [CI]: 189–236) days. The median age was 68 (37–87) years,
the median duration of prior exposure to RUX was 1.59 years (range
0–11 years) with 72.7% reporting prior exposure to non-RUX
therapies (range 1–5 lines). Primary myelofibrosis (PMF) was the
most prevalent disease category (56.4%, 62/110), followed by post-
polycythemia vera MF (PPV-MF) in 29.1% (32/110) and post-
essential thrombocythemia MF (PET-MF) in 14.5% (16/110).
Thrombocytopenia was common: median baseline platelet count
was 63 ×109/L, with 38.2% (42/110) <50 ×109/L. Baseline
hemoglobin was <10 g/dL in 64.5% (71/110) of the cohort.
MPN driver mutation frequency was as expected for MF [10, 12];

JAK2V617F mutation was present in 77.3% (85/110), CALR-mutation
in 12.7% (14/110; type 1: n= 11, type 2: n= 3), MPL-mutation in
8.2%, and “triple-negative” in 1.8% of cases, Fig. 1A. JAK2V617F
variant allele frequency (VAF) was ≥50% in 68.2% (58/85) with
VAF < 20% present in just 5.9% (n= 5) of patients. Non-MPN driver
mutations (NDM) were present in 76.4% (n= 84) with ≥3 NDMs in
20.9% (23/110) of patients. Analogous to previous reports, the most
prevalent NDMs were in ASXL1 and TET2 genes (in 29.1%, n= 32,
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and 26.4%, n= 29, of patients respectively) (Fig. 1A, Supplementary
Table S1). Splicing factor (SF) gene mutations were mutually
exclusive and detected in 34.5% (n= 38/110) of patients, which
included SF3B1 [13.6%, n= 15], U2AF1 [12.7%, n= 14], SRSF2 [5.5%,
n= 6], ZRSR2 [2.7%, n= 3]. Patients with SF mutations were more
often categorized as PMF (76.3%) rather than PET-MF (15.8%) or
PPV-MF (7.9%), P= 0.001 (Supplementary Table S2A). SF-mutated

patients had lower baseline hemoglobin level (Hb <8 g/dL in 39.5%
as compared with 16.9% in SF-wild type [WT], P= 0.009) and were
more likely to be red cell transfusion dependent at trial entry (RCC-
D) as compared with SF-WT patients (42.1% vs 22.2% respectively,
P= 0.012; Supplementary Table S2A). SF3B1-mutated patients had
higher trial entry platelet counts (platelet count >100 × 109/L) in
66.7% vs. 28.7% in SF3B1-WT patients, P= 0.004).

Fig. 1 The mutation and cytokine profiles in the PAC203 cohort. A Waterfall plot of mutation distribution in the PAC203 cohort. B Forest
plot illustrating the results of logistic regression analyses of mutation statuses and baseline hemoglobin count associated with the likelihood
of grade 3/4 anemia; TET2-mutated patients were more likely to experience grade 3/4 anemia independent of baseline hemoglobin level; odds
ratio (OR) 4.5, 95% CI 1.4–13.9, P= 0.009 (upper panel). Forest plot illustrating the results of logistic regression analyses of mutation statuses
and baseline platelet count associated with the likelihood of grade 3/4 thrombocytopenia; KRAS/NRAS-mutated patients were more likely to
experience grade 3/4 anemia after adjustment for baseline platelet level; OR 3.65, 95% CI 1.2–11.3, P= 0.026. (lower panel). Univariate logistic
regression was performed for each variable. Significant P values (<0.05) highlighted in red and OR denoted by (*) were adjusted. JAK2V617F
JAK2 V617F-mutated; HMR high molecular risk mutation [IDH1/2, SRSF2, ASXL1, EZH2, U2AF1Q157]; SF splicing factor mutation [SF3B1, U2AF1,
SRSF2, ZRSR2], ASXL1 ASXL1-mutated; TET2 TET2-mutated, RAS KRAS/NRAS-mutated, BL Plt <50 baseline platelet level <50 × 109/L. C Cluster
dendrogram of cytokine levels in ruxolitinib refractory / intolerant study cohort with cluster scores 2 and 4 highlighted in the table for high
molecular risk positive (HMR+) and negative (HMR−) patients.
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High molecular risk mutations (HMR; IDH1/2, SRSF2, ASXL1, EZH2,
U2AF1Q157) [7] were present in 43.6% (48/110) and ≥2 HMR
mutations were present in 15.4%, a prevalence similar to other high-
risk enriched MF cohorts [12, 13]. No clinical parameters were
associated with a HMR mutation (Supplementary Table S2B).
Strikingly, RAS-pathway mutations, KRAS/NRAS/CBL (RAS/CBL-MT),
were found at a higher frequency than previously described in MF
cohorts [13, 14] in 20.9% of patients (n= 23; RAS n= 20, CBL n= 3;
Fig. 1A, Table 1). Thesemutations were sub-clonal in themajority with
a median VAF of 10% (range 1.9–95%). RAS mutations occurred in
known mutation hotspots; the most prevalent was in codon G12
(n= 12/20) [13]. RAS/CBL-MT patients had a significantly higher
frequency of NDMs (≥3 in 56.5% vs. 9.2% for RAS/CBL-WT patients,
P= 0.0001, Table 1) and a co-mutated HMRmutation (65.2% vs 37.9%
for RAS/CBL-WT patients, P= 0.02, Table 1). KRAS/NRAS/CBL and TP53
(n= 7 patients) mutations were mutually exclusive in this cohort.
In patients with both molecular and 24-week clinical data, there

were no significant correlations between driver or NDM mutation
status (including specific analyses relating to HMR and RAS/CBL-
MT status) and SVR or TSS response, although numbers of events
for analysis were low. Grade 3/4 anemia occurred more often
during the study period in TET2-mutated patients (odds ratio [OR]
4.2, 95% CI 1.4–13, P= 0.012), Fig. 1B. Grade 3/4 thrombocytope-
nia occurred more frequently in RAS/CBL-MT patients (OR 3.64,
95% CI 1.2–11.3, P= 0.026, Fig. 1B), including after adjusting for
baseline platelet strata (< vs. ≥50 ×109/L). The presence of ≥3
NDMs was associated with an increased risk of infections (OR 7.59,
95% CI 2.45–23.4, P= 0.0001).

Follow-up molecular analysis at week 24 was performed in
38.2% (n= 42/110). No significant driver or NDM molecular
responses (≥50% reduction in VAF) were detected. At least one
new NDM was acquired in 7.1% (3/42) including CBL [2], TET2 [1],
TP53 [1], U2AF1 Q157 [1]. No associations were observed between
follow-up mutation analyses and outcomes.
Unsupervised clustering identified 6 cytokine clusters at base-

line, Fig. 1C. Elevated cluster 2 (P= 0.009) and 4 (P= 0.006) scores
were associated with HMR mutations. Higher cluster 2 scores were
also associated with driver mutation VAF ≥50%. The pro-
inflammatory cytokines in cluster 2 linked to HMR mutations
(HMR+) represented a cluster regulated by the NFκB pathway. The
presence of a HMR mutation was particularly associated with
significantly higher IL-8 levels (40.5 pg/ml) as compared with
absence of an HMR mutation (24.5 pg/ml), P < 0.0001. Elevated
tumor necrosis factor-alpha (TNF-α) was also associated with HMR
mutations; TNF-α was 61 pg/ml in HMR+ vs. 48.5 pg/ml for HMR−,
P= 0.009. Although RAS-pathway mutations were not associated
with specific cluster scores, these patients did have higher levels
of the NFκB-associated cytokine IL12P40 (1.1 ng/ml) as compared
with RAS/CBL-WT patients (0.6 ng/ml), P= 0.001. There was no
association between cytokine cluster scores and exposure to RUX.
We report the mutation landscape in RUX-ref/int cytopenic MF,

showing enrichment for HMR mutations and, in particular, a higher
frequency of RAS-pathway mutations (20.9%) than previously
reported in MF cohorts (to date at a frequency of 6–8.1%)
[13, 14]. RAS and HMR mutation co-occurrence has previously been
described, which we also observed [14]. RAS-pathway mutations

Table 1. RAS/CBL-mutated patient baseline clinical and mutation characteristics.

RAS/CBL-mutated, N= 23 n (%) RAS/CBL-WT, N= 85 n (%) P value

Age in years, median (range) 69 (56–85) 68 (37–87) 0.42

Male gender, n (%) 14 (60.9) 50 (57.5) 0.77

MF diagnosis, n (%)

Primary MF 13 (56.5) 49 (56.3)

PPV MF 8 (34.8) 24 (27.8)

PET MF 2 (8.7) 14 (16.1) 0.6

Prior ruxolitinib, n (%)

Failure 16 (69.6) 64 (73.6) 0.64

Intolerance 18 (78.2) 59 (67.8) 0.33

Prior ruxolitinib duration in months, median (range) 29 (1.7–131.4) 16.6 (1.7–119) 0.38

Platelet count × 109/L, median (range) 59 (14–402) 63.5 (13–910) 0.47

Platelet count <50, ×109/L, n (%) 10 (43.5) 32 (36.8) 0.58

Hemoglobin <10 g/dL, n (%) 19 (82.6) 52 (59.8) 0.13

RBC transfusion dependent, n (%) 10 (43.5) 22 (25.2) 0.25

Platelet transfusion dependent n (%) 4 (17.4) 5 (5.7) 0.07

Peripheral blasts, median (range) 2 (1–5) 2 (0–17) 0.65

White blood cells, ×109/L, median (range) 6.6 (1.2–107.7) 6.8 (1.1–103.4) 0.85

Spleen Volume (cm3) by MRI/CT, median (range) 2589 (458–5520) 2240 (262–4994) 0.22

Driver mutation status

JAK2V617F 18 (78.2) 67 (77)

CALR 2 (8.7) 12 (13.8)

MPL 2 (8.7) 7 (8)

Triple negative 1 (4.4) 1 (1.2) 0.7

JAK2 V617F allele burden ≥50% 12 (66.7) 46 (68.7) 1

HMR mutation 15 (65.2) 33 (37.9) 0.02

NDM ≥3 13 (56.5) 8 (9.2) 0.0001

WT wild-type, MF myelofibrosis, PPV post polycythemia, PET post essential thrombocythemia, RBC red blood cell, HMR high molecular risk, NDM non-
myeloproliferative neoplasm driver mutation.
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often showed low allele burden and correlated with the presence of
multiple NDMs, consistent with presence of RAS-pathway mutations
in patients undergoing genetic evolution. Although mutation data
was not available prior to RUX treatment in this cohort, recent single
cell genetic analyses in myelofibrosis show RAS-pathway mutations
were one of most common emergent mutations after exposure to
RUX [15]. Activating mutations of the RAS-pathway have also been
reported to correlate with reduced likelihood of spleen and
symptom responses in patients with myelofibrosis treated with
dual JAK1/2 inhibitors [13]. RAS-pathway mutations in MF have also
been associated with shorter survival and progression to leukemia
[14]. The PAC203 cohort therefore represents a genetically high risk
group of patients.
Importantly, we report for the first time a relationship between

HMR and RAS mutations and a pro-inflammatory cytokine
signature. This signature mirrors a previously described RUX
resistant cytokine profile [11] involving NFκB signaling. A potential
underlying mechanism may be that the inflammatory microenvir-
onment creates a selective pressure promoting the evolution of
subclones carrying HMR and RAS-pathway mutations. We spec-
ulate that this combination of cell-intrinsic genetic properties of
the clone, and cell-extrinsic inflammatory microenvironment
might collectively confer JAKi resistance. Therapeutic strategies,
including dual blockade of JAK2 and NFκB, may prove beneficial
for treatment of MF. As a JAK2/IRAK1 inhibitor, PAC targets both
pathways, as IRAK1 is upstream of NFκB signaling suggesting a
potential role in those with HMR and RAS-pathway mutations.
Although no specific TSS or SVR responses were observed in these
patients on PAC203, the numbers of patients available for analysis
was low, and the follow-up period may not have been sufficient to
capture responses in this subgroup. Other strategies, including
combinations targeting JAK and MEK/ERK pathways together with
inflammatory pathways, for example through bromodomain
inhibition, could be an effective strategy to mitigate clonal
evolution in high-risk patients.
In summary, the PAC203 cohort encompasses a molecularly

high-risk group, with a high incidence of HMR and RAS pathway
mutations that may be associated with JAK1/2 inhibitor resistance.
Our findings will help inform the application of precision medicine
for this group of patients with a major unmet need for new
therapeutic strategies.
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