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Have we been qualifying measurable residual disease correctly?
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Someone told me that each equation I included in the book
would halve the sales. I therefore resolved not to have any
equations at all. In the end, however, I did put in one equation,
Einstein’s famous equation, E = m c squared. I hope that this will
not scare off half of my potential readers.

Stephen Hawking

INTRODUCTION
There is considerable interest in tests quantifying remaining
leukaemia cells after therapy, termed measurable residual
disease (MRD)-tests, to predict therapy outcomes, leukaemia
recurrence and consider potential subsequent interventions
[1–10]. Many studies reported a negative MRD-test during or
after completing anti-leukaemia therapy independently identi-
fies persons with a low risk of leukaemia relapse compared with
those with a positive MRD-test after adjusting for other
predictive and prognostic co-variates [5, 11–16]. Other studies
recommend specific interventions in someone with a positive
MRD-test such as a haematopoietic cell transplant or immune
therapy such as chimaeric antigen receptor (CAR)-T-cells.
Whether such interventions reduce leukaemia relapse risk in
someone with a positive MRD-test can only be proved in a
randomized controlled trial [8, 17].
Most MRD-tests focus on detecting a leukaemia-related or

-specific immune phenotype, cytogenetic and/or molecular
abnormality [1, 2, 18–25]. A perfect MRD-test would precisely
quantify only leukaemia cells biologically capable of causing
leukaemia relapse and likely to do so within a defined interval
after accounting for competing causes of therapy-failure [7, 8].
Routine clinical use of MRD-testing requires refinements and
standardization/harmonization of assay platforms and result
reporting [1, 2, 21–23].
There is consensus a flow cytometry-based MRD-test should be

reproducible at a limit of detection (LoD) of ≤0.01% leukaemia
cells in a blood or bone marrow sample [26]. Based on this

reasoning it is proposed a multi-parameter flow cytometry
(MPFC)-based MRD-test should only be declared positive if ≥
5 ´ 10E+5 cells are analysed and if ≥20 or ≥50 cells are positive
[27–30]. However, this definition is often unmet in clinical practice.
For example, modern MRD-directed, risk-stratified approach to
treating childhood acute lymphoblastic leukaemia (ALL) requires
an MPFC-based MRD-test done in bone marrow aspirate 2–3 weeks
after starting induction chemotherapy, a time when collecting >
5 ´ 10E+5 bone marrow mononuclear cells is difficult [31, 32]. The
same limitation operates in adults receiving intensive induction
chemotherapy. How should a physician use results of MRD-testing
in these settings?

TYRANNY OF SAMPLING ERROR
Assume in an MPFC-based MRD-test N cells are analysed out of
which n cells are identified as leukaemia cells. By leukaemia cells we
mean cells with immune phenotype of the leukaemia, not
necessarily cells able to cause relapse within a defined interval.
The conventional way to estimate MRD is MRDconventional ¼ n

N
[33, 34].
When the true proportion of leukaemia cells (“true MRD”) is < 1

N,
the standard error of MRDconventional has a magnitude even larger
than true MRD because of sampling error (Supplementary
Methods). Simply put, the MRDconventional test can be very
imprecise.
To better appreciate the tyranny of sampling error consider

the hypothetical example of a haematologist reviewing the
following MRD-test result: N ¼ 50000 and n ¼ 0. Analysing
these few cells is not uncommon in practice for reasons we
discussed above. Using the conventional approach to quantify-
ing MRD the haematologist interprets this MRD-test as
MRDconventional ¼ 0

50000 ¼ 0%: In doing so the haematologist fails
to appreciate the result of this MRD-test is compatible with a
broad range of true MRD values. In reality, the haematologist
can only conclude MRD-test result is �0:006% with a 5-percent
probability true MRD is actually >0:006%.
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Using Bayesian reasoning, the worst-case (probability <0.05)1

scenario estimate of MRD, which we denote as MRDworst case, can
be computed using a beta distribution (the formula is “BETA.INV
(0.95, 1þ n, 1þ N � n)” in Microsoft Excel; Supplementary
Methods) [35].
Table 1 displays the extent to which MRDconventional under-

estimates true MRD at different values of N in the worst-case
scenario (that is, by how much MRDconventional under-estimates
MRDworst case). Note that when MRDconventional is � 0:01%
MRDworst case is considerably larger than MRDconventional across a
broad range of N values. Conversely, when MRDconventional is �
0:1%MRDworst case is usually very close to MRDconventional unless the
number of analysed cells N is < 10E+5.
Typically result of an MRD-test is interpreted as positive or

negative based on applying a cut-off threshold to MRDconventional.
Our analysis of the adverse impact of sampling error (Table 1)
suggests any cut-off threshold <0.01% used in MRDconventional
would yield unreliable results with many false-negatives. More-
over, when estimating the hazard function of MRDconventional for
leukaemia relapse risk false-negatives would cause “flattening” of
the estimated curve because the contrast between MRD-positives
and -negatives is attenuated by contamination of false-negative
MRD-test results.

BORROWING LESSONS FROM DECISION SCIENCE
How to solve this problem when an inaccurate false-negative test
result could have adverse clinical consequences? We propose the
haematologist should instead rely on MRDworst case rather than
MRDconventional to estimate relapse risk.
Our reasoning follows. When interpreting an MRD-test result to

predict relapse the haematologist is essentially playing a “chess
game against nature”. It’s his/her 1st move to make, declaring the
MRD-test result positive or negative. In response the opponent
(nature) has two possible moves, causing relapse or not. When
MRDworst case is larger the haematologist is more likely to later
regret if he/she declares the MRD-test result negative, because
more plausibly nature would play tricks on the haematologist by
causing relapse.
Ranking of people’s test results based on MRDworst case from

high to low values minimises the sum of regrets in the worst-case
scenario because people whose MRD-test results are more likely to
cause regret in case of a negative interpretation are already
considered to have a higher risk of relapse. In the language of
decision science, MRDworst case is a minimax regret approach to
quantifying MRD test results according to Leonard Savage’s theory
of statistical decision or Herbert Simon’s theory of rational choice
under uncertainty [36, 37].

A CLINICAL EXAMPLE
To illustrate using MRDworst case to interpret test results we
interrogated data from 883 consecutive children with ALL <16
years (Supplementary Fig. 1; Supplementary Table 1; and
Supplementary Methods). The subjects were treated on the
Chinese Children’s Cancer Group study ALL-2015 (CCCG-ALL-
2015) protocol [32]. 618 (70%) and 265 (30%) of the children were
low- and intermediate-risk at diagnosis according to the CCCG-
ALL-2015 criteria. MPFC-based MRD-testing was done on bone
marrow samples 19 days after starting therapy. Median number of

analysed cells (N) was 4 × 10E+5 (Interquartile Range [IQR],
2.4–5.0 × 10E+5; Range, 3.4 × 10E+3 to 1.0 × 10E+6). 686 (78%)
MRD-tests analysed <5 × 10E+5 cells, a threshold stipulated by
guideline for good laboratory practice (GLP) [27, 28, 30].
294 (33%) children had MRDconventional<0:01% on day 19, 274

(93%) of whom had zero values (i.e. no leukaemia cell was
detected [n ¼ 0]). The remainder (20 [7%]) had 8–24 leukaemia
cells detected. Because most children with MRDconventional<0:01%
had no leukaemia cells detected in the sample, MRDconventional
could not identify relative relapse risk in these children. The
C-statistic (the probability of pairwise agreement with relapse time
[38]) of MRDworst case (0.57) was significantly higher (P <0.001;
2-sided Wilcoxon test on 500 bootstrap samples [39]) compared
with C-statistic of MRDconventional (0.50). In short, MRDworst case was a
better predictor of relapse than MRDconventional when
MRDconventional was close to zero (Fig. 1A). In contrast, for the 589
(67%) children who had MRDconventional � 0:01% on day 19,
C-statistics of MRDworst case (0.58) and MRDconventional (0.58) were
similar (P= 0.61).
We estimated non-linear hazard functions of MRDconventional and

MRDworst case for relapse by fitting restricted cubic spline curves
using Markov chain Monte Carlo [40–43]. Since MRDworst case is
always larger than MRDconventional, all else being equal, switching
from MRDconventional to MRDworst case should induce a right-shift of
the hazard function curve. Instead, we observed the hazard
function of MRDworst case rose more steeply than the hazard
function of MRDconventional (Fig. 1B). Inaccuracies in MRD-estimation
using the conventional approach distorted the critical range of
MRD for discriminating low- from high-risks of cumulative
incidence of relapse (CIR).
Combining MRDworst case on day 19 with estimated relapse risk

at diagnosis further improved risk-stratification of the children
whose MRDconventional on day 19 was <0:01% with a C-statistic of
0.73. This was significantly better than using MRDworst case alone
(0.73 vs. 0.57 [P < 0.001; 2-sided Wilcoxon test on 500 bootstrap
samples]) or using relapse risk at diagnosis alone (0.73 vs. 0.68
[P < 0.001]; Fig. 1C). 214 children (73%) with MRDconventional<0:01%
on day 19 were low-risk at diagnosis and all subsequently received
low-intensity therapy. The remainder (80 [27%]) were
intermediate-risk at diagnosis and all received high-intensity
therapy. Consequently, therapy-intensity did not confound results
within each therapy cohort.
Interestingly, point-estimates for relapse at 1.5 years for high-

and low-MRDworst case cohorts were similar and their relapse curves
only diverged after 1.5 years (Fig. 1A, C). Because MRDworst case
corrected for (probable) under-sampling of leukaemia cells at

Table 1. To what extent MRDconventional under-estimates true MRD at
different numbers of analysed cells N in the worst-case scenario.

MRDconventional

10% 1% 0.1% 0.01% 0.002%

N 50000 −2% −7% −21% −52% −79%

100000 −2% −5% −15% −41% −68%

200000 −1% −4% −11% −31% −56%

300000 −1% −3% −9% −26% −49%

400000 −1% −3% −8% −23% −45%

500000 −1% −2% −7% −21% −41%

600000 −1% −2% −7% −19% −38%

700000 −1% −2% −6% −18% −36%

800000 −1% −2% −6% −17% −34%

900000 −1% −2% −5% −16% −33%

1000000 0% −2% −5% −15% −31%

1Strictly speaking, the worst possible value of true MRD is always ≈1
even when MRDconventional ¼ 0. (The chance of true MRD ≈1 might be
practically zero but the probability of this unlikely event is never zero.)
Defining the worst-case scenario estimate as “not likely (probability ≤
0.05) to exceed this value” is more useful for comparing MRD-test
results.
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therapy start this divergence likely resulted from expansion of pre-
existing sub-clones during and/or after the end of low-intensity
maintenance therapy (54 to 125 weeks) [32].

IS MRDWORST_CASE AN INDEX OR A METRIC FOR MRD?
Index is defined as a number (such as a ratio) derived from a series
of observations and used as an indicator or measure. Metric is
defined as a standard of measurement. Some may argue
MRDworst case is an index for MRD whilst MRDconventional ¼ n

N is a
metric. The distinction between index and metric is in some
measure semantic. Even MRDconventional is a statistical construct for
estimating likelihood of relapse. MRDconventional is what statisticians
call a maximum-likelihood estimate, which is not the same as an

estimate for the median (i.e. 50th-percentile) value among all the
possible values of true MRD conditional on test result (Supple-
mentary Methods). When MRDconventional is zero MRDconventional is
actually the 0th-percentile (i.e. the lowest possible) value among
all the possible values of true MRD conditional on test result!
MRDworst case, on the other hand, is the 95th-percentile value
among all the possible values of true MRD conditional on test
result.

DISCUSSION
In this Perspective we argue the consensus GLP of MRD-testing
is sub-optimal in many instances. Under these circumstances
MRDconventional test results are sometimes mis-leading. Our
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Fig. 1 Using MRDworse_case in a cohort of children with ALL. A Risk-stratifications based on MRDconventional vs. MRDworst case on day 19 when
MRDconventional<0:01%. Cut-off threshold for distinguishing “MRDworst case high” and “MRDworst case low” is 7.3 × 10E−6 or 0.00073%. B Hazard
functions of MRDconventional and MRDworst case on day 19 for relapse risk. Curve estimation is based on data from the entire cohort of 883
children. Dotted lines indicate 95-percent confidence intervals. C Risk-stratification based on joint consideration of estimated relapse risk at
diagnosis and MRDworst case on day 19 when MRDconventional<0:01%. Hazard ratios (HRs) and P-values are based on the Fine-Gray and Gray
methods [48, 49].
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analyses of data from a large cohort of childhood ALL indicates
the minimax regret approach (MRDworst case) improves relapse
risk prediction over the current method (MRDconventional).
MRDworst case corrects for variation in strength of evidence in
MRD-tests when predicting leukaemia relapse. Moreover, non-
linear modeling of MRDworst case hazard function uncovers the
critical range of MRD wherein the risk of leukaemia relapse
accelerates. Because the true hazard function curve is steeper
and operates at a lower range of MRD than previously realised
based on MRDconventional it is important to continue developing
and using increasingly sensitive (and specific) assays for
detecting residual leukaemia cells.
We acknowledge several limitations. Our analyses of the clinical

data were retrospective and subject to bias. We focused on MPFC,
which enumerates mostly live cells one-by-one and is distinct
from other types of assays such as quantitative real time
polymerase chain reaction (RT-qPCR) or next generation sequen-
cing (NGS). We also did not analyse false-positive errors in MRD-
tests, which are more likely a biological than statistical issue as
many or perhaps most false-positives are caused by not knowing
which leukaemia cells have the biological ability to cause relapse
within an observation interval [44–46]. In MPFC some aberrant
leukaemia phenotypes may be more confidently identified as
positive compared with others. Consequently, further refinement
of results of MRD-testing is possible. Also, molecular tests such as
NGS may increase accuracy of identifying residual leukaemia cells
[8, 47]. However, sampling error remains an inherent limitation for
any MRD-test as does the current inability to identify leukaemia
cells biologically able to cause relapse regardless of detection
technology.
We suggest our proposed metric MRDworst case will help

haematologists more accurately predict leukaemia relapse. It is
possible to further improve accuracy of predicting leukaemia
relapse by considering additional data beyond MRD-tests
provided confounding predictive and prognostic co-variates are
adjusted for and the therapy regimen is considered.

DATA AVAILABILITY
Clinical data are available upon reasonable request to the corresponding authors.
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