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TO THE EDITOR:
Multiple myeloma (MM) is one of the most common hematolo-
gical malignancies, accounting for 20% of all newly diagnosed
hematological cancers [1]. The most recent data from Cancer
Today show that in 2020 the number of new MM cases was
176,404 worldwide (https://gco.iarc.fr/today/home).
Established risk factors for MM include age, male sex, African

ancestry, obesity, chronic inflammation, exposure to pesticides,
organic solvents, and radiation [2]. Familial aggregation of MM
and its precursor monoclonal gammopathy of undetermined
significance (MGUS) suggests that genetic factors play a role in
risk of MM as well [3]. Genetic variability has been identified
as a risk factor for MM, including 25 common genetic loci
identified in genome-wide association studies (GWAS). However,
estimates of heritability show that many more loci remain to be
found [4].
A key question is therefore how to find new causative variants.

The stringent significance threshold usually used in GWAS
(p < 5 × 10−8) accounts for the many statistical tests being
performed but may result in false negatives. Reducing the number
of tests will relax the required significance threshold, thereby
increasing statistical power to detect associations with MM risk for
each SNP. One strategy for reducing the number of tests is to
examine SNPs with higher prior probability of association
according to meaningful biological criteria. We looked for novel
MM risk loci using a two-phase large-scale association study,
prioritizing polymorphisms with predicted functional impact, a
strategy that has been used for other cancers and led to the
discovery of new loci [5–7] It is well known that functional
variants are indeed more likely to be associated with disease
development [8].
We used data from the International Lymphoma Epidemiology

Consortium (InterLymph) for discovery and from the German-
speaking Myeloma Multicenter Group (GMMG), the International
Multiple Myeloma rESEarch (IMMEnSE) consortium, as well as
summary statistics from the FinnGen study for replication, for a
total of 5982 MM cases and 266,173 controls. Detailed character-
istics of the study populations are shown in the supplementary
methods and supplementary table 1.
Candidate SNPs to be replicated were selected based on their

association with MM risk and their functional role. First, we
obtained summary results including odds ratios (OR), 95%
confidence intervals (95%-CI), and p-values of the top SNPs of
the InterLymph GWAS. Subsequently, all SNPs in the MM data set

from InterLymph with p < 5 × 10−4 (N= 4396) were looked up in
the first replication dataset, the GMMG GWAS. We did not consider
SNPs from 15 loci that were reported to be associated at genome-
wide significance level in previous GWASs. All SNPs with
significant p-values (p < 0.05) in the GMMG GWAS and ORs going
in the same direction in both datasets were selected. The next
step was annotating the selected SNPs (N= 136) for their
predicted function, using several suitable bioinformatic tools and
databases. Specifically, we looked at expression and splicing
quantitative trait loci (eQTLs and sQTLs), SNPs located in
transcription factor binding sites (TFBS), long non-coding RNA
(lncSNPs), SNPs that are located within enhancers, and poly-
morphisms located in gene coding regions (missense, stop-gain,
stop-loss, synonymous SNPs). Supplementary Table 2 shows the
details of the 136 SNPs and their predicted functional character-
ization. The resulting list from all annotations was pruned for
linkage disequilibrium (LD) using the LDlink portal (https://
ldlink.nci.nih.gov/). Only SNPs with r2 < 0.6 among them were
kept, resulting in a total of 12 independent loci on 9 chromo-
somes. Replication in IMMEnSE and FinnGen was attempted for
SNPs showing association with risk in the meta-analysis between
InterLymph and GMMG GWAS and at least one in silico functional
annotation. After exclusion of SNPs that had already been
analysed in IMMEnSE in the context of previous projects and
already shown not to be significantly associated with MM risk (on
chromosomes 6, 8, 12 and 21), 4 SNPs showed to have low p-value
of association with MM risk and had at least one functional
prediction annotation (rs12038685, rs2664188, rs12652920,
rs28199), which were therefore chosen for replication in IMMEnSE
(Supplementary Table 3). An in-depth description of the SNP
functional annotation and selection, as well as the technical details
of the genotyping and quality control, can be found in
the Supplementary Methods.
Analysis of association between each SNP and MM risk was

carried out with logistic regression models, by estimating ORs,
their 95%-CI, and associated p-value. The analyses were adjusted
for age (at diagnosis for MM cases and recruitment for controls),
sex, and the 10 first principal components for GWAS data, or
country of origin in IMMEnSE, which lacks GWAS data. All meta-
analyses were conducted with R, using a fixed-effect model
between summary statistics of the different studies. The I² statistic
was computed to quantify heterogeneity across studies.
rs28199, on chromosome 5, was associated with MM risk in

IMMEnSE (OR= 1.19, 95% C.I.= 0.72–0.97, p= 0.018) and FinnGen
(1.17, 95% C.I.= 1.05–1.31, p= 0.014). The G allele of this SNP
resulted to be significantly associated with increased MM risk at a
genome-wide level in the meta-analysis of the four datasets
(OR= 1.18, 95% C.I.= 1.11–1.23, p= 3.18 × 10−10) with no hetero-
geneity among the studies (I2= 0) (Table 1, Fig. 1).
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This polymorphism was selected for being predicted to affect
the binding site of three transcription factors: IRF1, STAT2_STAT1
and FOXP1. The strongest effect of the SNP was calculated for IRF1
(interferon regulatory factor 1), a protein member of the IRF family
which was first recognized for its role as activator of genes
involved in both innate and acquired immune responses. IRF-1
activates a set of target genes associated with regulation of cell
cycle, apoptosis and the immune response [9, 10]. According to the
SNP2TFBS database, rs28199 is predicted to modify a binding site
of IRF1 leading to a stronger bond, which could in turn result in
oncogenesis considering the set of genes that IRF1 regulates.
The minor allele of rs28199 is located within a regulatory region
which according to the variant effect predictor tool (https://
www.ensembl.org/info/docs/tools/vep/index.html) and HaploReg
(https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php)

binds the CTCF protein, a highly conserved zinc finger with various
cellular regulatory role. CTCF binding perturbations cause different
types of 3D genome reorganization and may cause the activation
of the neighboring oncogenes [11]. Among the genes that CTCF
regulates there is STK10, which encodes for a serine/threonine-
protein kinase, highly expressed in hematopoietic tissue [12]. In
various lymphoid cells rs28199-G is associated with an increased
expression of STK10. Overexpression of STK10 has been reported in
several cancer types, including acute myeloid leukemia (AML),
another blood malignancy [13, 14].
We used data from the 500 Functional Genomics cohort from

the Human Functional Genomics Project (HFGP; http://
www.humanfunctionalgenomics.org/site/) to explore the possible
role in modulating immune response of the four SNPs selected for
the final replication steps. Namely, we tested if any of the SNPs of
interest were cytokine expression quantitative trait loci (cQTL)
using data from in vitro stimulation experiments, as well as
absolute numbers of 91 blood-derived cell populations and
103 serum or plasmatic inflammatory proteins. The cQTL analyses
showed that rs28199-G is also associated with an increased blood
level of Interleukin-6 (IL-6) (beta=0.075, p= 0.002). IL-6 is a
cytokine with a well established role as a growth and survival
factor in MM [15]. Specifically, in line with our results, an increased
level of IL-6 contributes to the pleiotropic effects of IL-6 regarding
proliferation, survival, drug resistance, and migration of MM cells,
thereby facilitating disease progression [16]. The counts of cell
populations and the levels of serum or plasmatic inflammatory
proteins were not significantly associated with the SNPs of
interest.
In conclusion, we identified a new genetic association for MM,

supported by functional biological explanations, thus highlighting
the importance of secondary analysis using functional approaches
for GWAS.

Table 1. Association results of the SNPs selected for replication in IMMENSE.

SNP Study ORa 95% CIb p-value Functional annotationc

rs12038685 InterLymph 1.22 1.11–1.34 5.04 × 10-5 TBFS

GMMG 1.11 1.00–1.23 0.046

FinnGen 1.2 1.07–1.32 0.004

IMMEnSE 0.94 0.81–1.09 0.409

Meta-analysis 1.18 1.10–1.25 2.07 × 107

rs2664188 InterLymph 1.18 1.09–1.28 8.14 × 10−5 eQTL

GMMG 1.09 1.00–1.09 0.048

FinnGen 1.01 0.89–1.12 0.808

IMMEnSE 0.96 0.84–1.10 0.58

Meta-analysis 0.91 0.85–0.97 0.002

rs12652920 InterLymph 0.83 0.75–0.91 1.62 × 10−4 TBFS

GMMG 0.90 0.81–0.99 0.031

FinnGen 1.09 0.96–1.22 0.174

IMMEnSE 0.99 0.84–1.15 0.875

Meta-analysis 0.91 0.86–0.97 0.0001

rs28199 InterLymph 1.18 1.10–1.28 7.31 × 10−5 TBFS

GMMG 1.14 1.04–1.25 0.004

FinnGen 1.18 1.05–1.31 0.014

IMMEnSE 1.20 1.03–1.39 0.018

Meta-analysis 1.18 1.11–1.23 3.18 × 10−10

aOR odds ratio.
b95%C.I. 95% confidence interval.
cTFBS: the SNP is predicted to alter one or more transcription factor binding site(s); eQTL: the SNP is predicted to be a quantitative trait locus in whole blood or
EBV-transformed B-lymphocyte cell lines.

Fig. 1 Meta-analysis result of rs28199. Forest plot of the meta-
analysis using a fixed effects model across all four datasets.
Heterogeneity was assessed using the I2 statistic. OR = odds ratio,
95% CI = 95% confidence interval.
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