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Patients with FLT3-mutated AML have a high relapse rate and suboptimal outcomes. Many have co-mutations suitable for
measurable residual disease (MRD) monitoring by RT-qPCR and those destined to relapse can be identified by high or rising levels
of MRD, called molecular failure. This provides a window for pre-emptive intervention, but there is little evidence to guide
treatment. The use of FLT3 inhibitors (FLT3i) appears attractive but their use has not yet been evaluated. We identified 56 patients
treated with FLT3i at molecular failure. The FLT3 mutation was an ITD in 52, TKD in 7 and both in 3. Over half of patients had
previously received midostaurin. Molecular failure occurred at a median 9.2 months from diagnosis and was treated with gilteritinib
(n= 38), quizartinib (n= 7) or sorafenib (n= 11). 60% achieved a molecular response, with 45% reaching MRD negativity.
Haematological toxicity was low, and 22 patients were bridged directly to allogeneic transplant with another 6 to donor
lymphocyte infusion. 2-year overall survival was 80% (95%CI 69–93) and molecular event-free survival 56% (95%CI 44–72). High-
sensitivity next-generation sequencing for FLT3-ITD at molecular failure identified patients more likely to benefit. FLT3i
monotherapy for molecular failure is a promising strategy which merits evaluation in prospective studies.
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INTRODUCTION
Mutations in the gene encoding the FLT3 receptor tyrosine kinase
are common in acute myeloid leukaemia (AML) [1] and are
associated with a high rate of relapse and poor overall survival
[2, 3]. While the incorporation of FLT3 inhibitors (FLT3i) into
frontline treatment has been shown to improve outcomes, over
40% of patients still relapse [4]. Outcomes after relapse remain
poor even with the availability of second-generation FLT3i as
salvage therapy [5], for example the median overall survival (OS)
after salvage therapy with gilteritinib in the ADMIRAL study was

9.3 months, with 2-year survival of 3% in those with prior exposure
to a FLT3i [6]. Similarly, in the QUANTUM-R study quizartinib
treated patients had median OS 6.2 months [7]. Therapy with FLT3i
at relapse is also associated with high rates of haematological
toxicity which frequently requires dose reduction and treatment
interruption, with grade 4 thrombocytopenia and neutropenia
were seen in 30% and 27% of patients in QUANTUM-R and febrile
neutropenia reported in 46% of patients in ADMIRAL [7, 8].
Improved therapeutic strategies are needed to improve these

poor outcomes. Regimens combining FLT3i with venetoclax have
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shown somewhat higher response rates, for example the
combination of gilteritinib and venetoclax showed median OS of
10 months but grade 3–4 haematological toxicity occurred in 80%
of patients [9]. The triplet combination of gilteritinib, venetoclax
and decitabine showed a 2 year OS of 29% in the relapsed/
refractory cohort and was also associated with substantial
haematological toxicity which was frequently dose limiting [10].
These combinations appear to improve FLT3 mutational clearance
in moderately sensitive assays compared with FLT3i monotherapy.
Molecular monitoring of measurable residual disease (MRD) can

identify patients at high risk of relapse. While FLT3 mutations
alone are not recommended as targets for sequential monitoring
due to their instability [11], many patients with FLT3 mutated AML
have a co-existing stable genetic lesion suitable for molecular
monitoring including NPM1 mutation (mut) or fusion genes (FG).
For example, in the UK NCRI AML19 trial (n= 1705), 70% of
patients with FLT3 mutated AML (n= 481) had a co-occurring
NPM1mut or FG (unpublished data, Supplementary Fig. 1).
Patients destined to relapse can be reliably identified by rising

levels of MRD (here called molecular failure) and this provides a
potential window for pre-emptive intervention [11–13]. There is a
growing body of evidence that intervening prior to haematolo-
gical relapse may be associated with improved outcomes [14–18],
but the optimal treatment in this situation remains undefined.
Proceeding directly to transplant with detectable MRD is
associated with very poor outcomes in patients with FLT3mutated
disease [19, 20]. Targeted therapy with venetoclax appears
effective in NPM1mut patients with molecular failure, although
those with concurrent FLT3 ITD may respond poorly [21]. Salvage
chemotherapy is frequently used but this is highly toxic, requires
prolonged hospital admission, and has been shown to be inferior
to FLT3i in patients with haematological relapse [5]. Currently no
published data exist to support the use of FLT3i in the setting of
molecular failure, however this is an attractive strategy as it could
provide a low-toxicity outpatient-based salvage strategy, and may
have the potential to re-establish an MRD negative state prior to
transplant or cellular therapy, thus reducing relapse risk and
improving overall survival.
Importantly, FLT3 mutations are unstable between diagnosis

and relapse, in particular almost half of patients treated with
midostaurin in first line therapy do not have a FLT3 mutation at
relapse [22] implying that FLT3i salvage would not be effective in
these patients. For patients with molecular failure, standard
diagnostics for FLT3 mutations are insufficiently sensitive and this
factor may have limited the application of FLT3i salvage in the
molecular failure setting. Recent advances in sequencing and
bioinformatics now allow the detection of FLT3 ITD with high
sensitivity (here called FLT3 ITD MRD) [23]. These assays identify a
subgroup of patients at extremely high risk of relapse. Prognostic
information provided by this assay appears to add to that
provided by established MRD markers such as NPM1mut

[19, 24–26]. Moreover, these assays may identify patients for
FLT3i salvage at the time of molecular failure.
Here, we describe outcomes of patients treated with FLT3i

salvage at the time of molecular failure and retrospectively
correlate these with results of FLT3 ITD MRD testing.

PATIENTS AND METHODS
Patients
Patients were included in this study if they had been treated in the UK
NCRI AML17 and AML19 studies which incorporated molecular monitoring
after each cycle of treatment and for two years afterwards, or if they had
received off-trial intensive induction chemotherapy with or without
midostaurin and had undergone sequential MRD monitoring (Supplemen-
tary Fig. 2). The inclusion criteria were 1) FLT3 ITD or TKD mutation at first
AML diagnosis (repeat documentation of FLT3 mutation at molecular
relapse not required), 2) MRD monitoring by reverse transcription

quantitative polymerase chain reaction (RT-qPCR) targeting NPM1mut or
FG, 3) ELN-defined molecular failure, 4) in haematologic remission at time
of molecular failure (<5% blasts in bone marrow and no extramedullary
disease, and 5) treatment with a single agent FLT3 inhibitor at the time of
molecular failure.
Patients potentially meeting the inclusion criteria were retrospectively

identified by the UK NCRI AML molecular MRD monitoring laboratory from
27 referring hospitals, and eligibility was confirmed by the treating
physician who also provided treatment and outcome data. Participating
sites were requested to query their departmental and/or pharmacy
databases for any patient treated with a FLT3i in haematological remission,
to identify all potential patients and minimise selection bias. FLT3i were
used off-label, with sorafenib and quizartinib accessed through compas-
sionate access schemes and gilteritinib via coronavirus emergency drug
supply arrangements. Patients were treated between March 2015 and
August 2022. The project was approved by the Central Bristol Research
Ethics Committee (22/SW/0042).

Molecular failure definitions
Molecular failure definitions proposed by the ELN were adopted
and comprised MRD > 1 copy/100 copies ABL1 after the completion of
induction and consolidation chemotherapy (molecular persistence), conver-
sion of MRD negativity to positivity (molecular relapse), or a rise of ≥1 log10
in transcript levels from low-level positivity (molecular progression) [11].
Molecular relapse and progression were confirmed with a second bone
marrow sample which had to show rising transcript levels. Molecular failure
was based on RT-qPCR MRD of NPM1 or FG, not FLT3 MRD.

MRD analyses
MRD testing for NPM1mut and FG was performed as part of routine care in a
central reference laboratory, by RT-qPCR using bone marrow aspirates with
ABL1 as a control gene as previously described [20]. Samples were run in
triplicate and those with inadequate input RNA (ABL1 cycle threshold >30)
were excluded. MRD positivity was recorded where disease-related
transcript amplification was detected before 40 cycles in ≥2/3 replicates
according to Europe Against Cancer criteria [27]. RT-qPCR results are
expressed as a copy number normalised to 105 copies of ABL1.
High sensitivity MRD assays for FLT3-ITD or TKD were not available at the

time of treatment with FLT3i was started. Available stored samples were
retrospectively analysed for FLT3 ITD MRD with targeted deep sequencing
using a modification of the getITD protocol (Supplementary methods) [23, 25].

Endpoints and statistical analysis
The primary objectives of the study were to describe response rates and
survival with the treatment strategy. Response was assessed by sequential
bone marrow RT-qPCR MRD measurement (recommended to be
performed every 1-2 cycles) and was censored at the time of allo-SCT,
donor lymphocyte infusion (DLI) or subsequent chemotherapy. An early
response assessment was strongly recommended as a means to detect
progressive disease due to the loss of FLT3 mutation, with therapy
switched for these patients.
Molecular response (MR) was defined as a ≥1 log10 reduction in NPM1mut

or FG transcript expression compared with the pre-treatment sample.
Complete molecular response (CRMRD-) required MRD negativity in a
sample affording technically adequate sensitivity (average ABL1 cycle
threshold <26.5). A ≥ 1 log10 rise in transcript levels was defined as
molecular progression, and patients not meeting any of these criteria were
designated stable disease.
Continuous variables are summarised using medians and inter-quartile

range (IQR) with groups compared using the Wilcoxon rank-sum test, while
categorical variables are displayed as frequencies and percentages and
compared using the Chi-squared or Fisher’s exact tests. The impact of pre-
treatment variables on response rate was assessed with logistic regression.
Overall (OS) and relapse-free survival (RFS) were measured from the day of
starting therapy, with haematological relapse or death included as RFS
events. Molecular event-free survival (mEFS) was defined as time to
molecular progression or molecular relapse, haematological relapse or
death. Time-to-event variables were estimated using the Kaplan-Meier
method and groups compared using the log-rank test. The impact of pre-
treatment variables on these endpoints was analysed with Cox regression,
with allogeneic transplant included as a time-dependent variable.
All analyses were performed with R statistical software version 4.2.2 (R
Core Development Team, Vienna, Austria).
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RESULTS
Patients
Fifty-six patients met the inclusion criteria and received pre-
emptive salvage therapy for molecular failure with a single-agent
FLT3 inhibitor (Supplementary Fig. 2). Their median age was 51
(range 5–76). At first diagnosis, 52 (93%) had FLT3-ITD, 7 (14%)
FLT3-TKD and 3 had both. The MRD marker used to diagnose
molecular failure was NPM1mut in 45 (80%) and a FG in 11 (20%) of
whom five had NUP98::NSD1, four DEK::NUP214, and one each
CBFB::MYH11 and RUNX1::RUNX1T1.
Molecular failure occurred at a median of 9.2 months (range

0.9–31) from AML diagnosis and comprised molecular persistence
in 9 (16%), molecular progression in 21 (38%) and molecular
relapse in 26 (46%). Patients had received a median of 1 prior line
of therapy (range 1–4), which included midostaurin in 29 (52%)
and allo-SCT in 17 (30%) (Table 1). The level of MRD at the time of
molecular failure ranged widely, from 2.9 to 400,000 copies/105

ABL1 (median 593 copies/105 ABL1).

Therapy
Thirty-eight (68%) patients were treated with gilteritinib, 7 (12%)
with quizartinib and 11 (20%) with sorafenib. The gilteritinib
starting dose was 120 mg in all but 3 patients (one 40mg, two at
80mg), and 12 patients increased to 200mg, mostly due to a lack
of response. Quizartinib was initiated at 30 mg and in all but one
patient increased to 60 mg. Sorafenib dosing was more variable,
with half of patients starting at 200mg bd and increasing to
400mg bd and the remainder starting on the higher dose. Forty-
one patients have completed therapy either due to progression
(20), successful bridge to transplant (12) or elective cessation (9).
The median number of 28-day cycles of the FLT3 inhibitor,
including those still on therapy, was 6 (range 1–43).
Data on treatment toxicity during the first 4 cycles was available

for 33 patients, in whom a low rate of haematological toxicity was
recorded. The median number of days per cycle of grade 4
neutropenia (<0.5 × 109/L) was 0 (range 0–11) and grade 4
thrombocytopenia (<25 × 109/L) also 0 (range 0–8). Only one
patient required transfusions of blood and platelets, which
occurred in the context of non-responding disease. The majority
of the therapy was delivered as an outpatient, with only 9 of the
33 patients requiring hospitalisation at any time in the first 4
cycles, for a total of 15 admission events of median duration
3 days (range 1–23 days). Twenty-two patients were bridged
directly to allo-SCT after FLT3i salvage after a median of 2.5 cycles
of therapy (range 1–6) and another 6 were administered pre-
emptive DLI. A further seven patients who did not achieve MR
were subsequently transplanted after chemotherapy salvage.

Molecular responses
Response to single agent FLT3 inhibitor salvage was assessable in
53 of 56 patients, with the first response assessment performed at
a median of 44 days (range 16 - 92) after starting the FLT3i. The
remaining 3 patients were administered additional therapy (DLI or
allo-SCT) prior to first disease assessment. A molecular response
(MR) was achieved in 32 of 53 patients (60%) and a molecular
complete response (CRMRD-) in 24 (45%). Eight patients (17%) had
stable disease and 12 (23%) progressed, including 5 with
haematological relapse without preceding documented molecular
progression. A swimmer plot depicting response, treatments and
relapses is shown in Fig. 1.
In most responding patients there was some evidence of a

response by the first assessment, 30 of 32 patients who eventually
achieved at least MR showed an MRD reduction of >0.5 log10 on the
first bone marrow assessment and 22 a >1 log10 decrease. The
deepest MRD response achieved with FLT3 inhibitor occurred after a
median of 50 days (IQR 36 to 84). In the 28 patients who were
bridged to allo-SCT or DLI, responses improved after cellular therapy,
with CRMRD- increasing from 48% to 96% (Supplementary Fig. 4).

Patients with FLT3-ITD had a response rate of 61% compared to
43% for FLT3-TKD (Fig. 2). In those with an NPM1 mutation, 56%
achieved MR, while eight of ten (80%) of patients with a FG had
MR. Treatment at molecular relapse had a higher response rate of
75% compared to treatment at molecular progression (50%) or
persistence (44%, p= 0.46). Patients previously exposed to
midostaurin had lower response rate (48% vs 75%, p= 0.048),
which was particularly pronounced in the subset taking mid-
ostaurin at the time of molecular failure (29% vs 75%, p= 0.002).
There was a high response rate in patients who had received prior
allo-SCT (93% vs 47% without prior allo-SCT, p= 0.002).
Patients treated with sorafenib had the highest rate of MR, 90%

compared to 54% for gilteritinib and 50% for quizartinib. However,
sorafenib was predominantly used in the post-transplant setting

Table 1. Baseline characteristics.

Characteristic N= 56

Female 33 (59%)

Median age 50.6

MRD marker

NPM1 45 (80%)

NUP98::NSD1 5 (8.9%)

DEK::NUP214 4 (7.1%)

CBFβ::MYH11 1 (1.8%)

RUNX1::RUNX1T1 1 (1.8%)

FLT3-ITD at diagnosis 52 (93%)

FLT3-TKD at diagnosis 7 (14%)

Missing 6

MRC cytogenetic risk

Favourable 2 (3.6%)

Intermediate 49 (88%)

Cytogenetics missing or failed 5 (8.9%)

ELN 2017 risk

Favourable 16 (29%)

Intermediate 26 (46%)

Adverse 9 (16%)

Not able to assign 5 (8.9%)

Median months from diagnosis to molecular
failure (IQR)

9.2 (5.3–13.7)

Number of prior lines of therapy

1 36 (64%)

≥2 20 (36%)

Refractory disease 5

Relapse 15

Previous midostaurin 29 (52%)

On midostaurin at time of molecular failure 17 (30%)

Previous allo-SCT 17 (30%)

In first remission 12

In CR2 or at relapse 5

Type of molecular failure

Molecular relapse 26 (46%)

Molecular persistence 9 (16%)

Molecular progression 21 (38%)

FLT3 inhibitor used for molecular failure

Gilteritinib 38 (68%)

Quizartinib 7 (12%)

Sorafenib 11 (20%)
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(7 of 11 patients) and exclusively in those without prior
midostaurin exposure, limiting the utility of direct comparison
between the agents.

Outcomes
Median follow up by reverse Kaplan-Meier method was 25 months
(95% confidence interval [CI] 21–31). At 24 months, OS was 80%
(95%CI 69–93), RFS was 70% (95%CI 58–86) and mEFS was 56%
(95%CI 44–72) (Fig. 3). Late relapses after stopping therapy were
noted in four patients (Fig. 1). 24-month OS was 91% (95%CI
81–100) in patients who achieved MR with FLT3i monotherapy vs
60% (95%CI 41–89) in those who did not, (p= 0.01, Supplemen-
tary Fig. 3). Patients who were bridged to pre-emptive allo-SCT or
DLI had excellent outcomes, with 2-year OS of 92% (95%CI
82–100) (Supplementary Fig. 4).
Factors associated with mEFS are shown in Table 2. On

univariable analysis, older age, shorter time since diagnosis, being
on midostaurin at molecular failure, no prior allo-SCT and higher
MRD copy number were associated with worse mEFS. On
multivariable analysis only the MRD copy number remained
significant. In patients who achieved MR, allo-SCT or DLI in
remission was associated with a hazard ratio for mEFS of 0.4 (95%
CI 0.1–1.8, p= 0.2). Due to a small number of events, overall
survival analyses were not possible.

FLT3-ITD MRD analysis
Stored pre-treatment samples from 36 patients were available for
FLT3 ITD MRD. This cohort had a MR rate of 58%. FLT3 ITD MRD
was detected in the pre-treatment sample in 28/36 patients (78%),
at a median VAF of 0.05%. In the 8 patients who tested FLT3 ITD
MRD negative prior to starting FLT3i, there were two molecular
responses. Both responding patients had low NPM1mut MRD copy
number by qPCR (97 and 64 copies/105 ABL1), therefore the
presence of a FLT3 ITD subclone below the lower limit of detection
cannot be excluded. In the 28 patients who tested FLT3 ITD MRD
positive, MR was achieved in 18 (68%).
In samples with a low NPM1mut /FG copy number (<200/105

ABL1) FLT3 ITD MRD was less likely to be detected (50% vs 88% in
those with higher levels). Patients who had previously received
midostaurin were more likely to test FLT3-ITD MRD negative at
molecular failure (30% vs 12%).
FLT3 ITD MRD testing was also performed on post-treatment

samples from 39 patients, which were taken at a median 44 days (IQR
30.5–70 days) after starting therapy. The median reduction in
NPM1mut/FG MRD was 1.6 log10 (IQR 0.2–2.4), while the median
reduction in FLT3-ITD MRD was 1.0 log10 (IQR -0.2 to 1.9). All patients
who had a MR by NPM1mut/FG MRD also showed a reduction in FLT3-
ITD MRD (median reduction 1.5 log10, IQR 1.0–3.1). All patients not
achieving a MR by NPM1mut/FG MRD, who were FLT3 ITD MRD

Fig. 1 Swimmer plot of responses and events. Top panel—patients without prior FLT3 inhibitor. Bottom panel—patients with prior FLT3
inhibitor.
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positive prior to therapy, demonstrated an increase in the ITD VAF
(median reduction −0.7 log10, IQR −1.5 to −0.3, Supplementary
Fig. 5). Of the non-responders who did not have a detectable ITD prior
to treatment, none were found to have an emergent ITD on disease
progression, suggesting that their disease was truly FLT3-ITD wildtype.

Samples at the time of subsequent relapse were available in six
patients (five molecular relapse, one haematological relapse), of
whom two relapsed while still on the FLT3 inhibitor. Half relapsed
with FLT3 wild-type disease and the other three with the same ITD
still detectable.

Fig. 2 Response rates in patient subgroups. Molecular response rates by pre-treatment characteristics. Black text - overall molecular
response rate. White text - CRMRD- rate. Abbreviations: Pers, molecular persistence; Prog, molecular progression; Rel, molecular relapse.

Fig. 3 Outcomes in all patients. Overall survival, relapse-free survival and molecular event-free survival from day of starting therapy.

J. Othman et al.

2070

Leukemia (2023) 37:2066 – 2072



DISCUSSION
This real-world study is the first reported cohort using FLT3 inhibition
as a pre-emptive salvage strategy in patients with molecular failure
but who remain in haematological remission. Response rates were
high and outcomes promising, even though patients were treated
prior to the availability of FLT3 specific MRD assays. The survival
outcomes of our study cannot be directly compared to those of
patients treated in haematological relapse due to lead time bias and
a different patient population. However the ability to bridge 50% of
patients to allogeneic transplant or cellular therapy was encouraging,
as this is known to be a pre-requisite for long term survival [8]. In
ADMIRAL and QUANTUM-R, 26% and 32% of patients were able to
be bridged to transplant [7, 8]. Haematological toxicity was notably
low, possibly due to greater baseline haematological reserve when
treating in haematological remission. There were few recorded
episodes of grade 4 neutropenia and thrombocytopenia and
infrequent requirement for hospital admission or transfusion.
A number of studies have attempted to improve outcomes for

relapsed FLT3 mutated AML by combining FLT3i with other
targeted therapies [9, 10], however no comparative studies have
yet been performed and results from early combination studies
have shown only modest improvements in response at the cost of
substantial toxicity. We suggest that intervention at the time of
MRD failure may allow even better outcomes with these
combination therapies by allowing treatment at higher doses
with less interruption. The results of the MORPHO study
(NCT02997202) assessing post-transplant gilteritinib maintenance,
in particular the correlation with MRD results, may potentially
provide additional support for an MRD-directed strategy.
An increasing number of publications have described out-

comes of various strategies for molecular failure, although none
specifically for patients with FLT3 mutations. Intensive che-
motherapy with FLAG-Ida-like regimens achieves MRD negativity
in 59% [20] and 80% [16] in small cohorts of NPM1 MRD relapse.
The toxicities associated with this approach make it less
appealing, especially when used in patients who remain in
haematological remission. Single agent azaciditine was able to
achieve molecular responses in 58% of patients in a prospective
study, but only 43% in the subset with FLT3-ITD mutations [17].
Finally venetoclax combinations have shown promise, with
molecular responses in 69% in the prospective Phase 2 VALDAC
study [18] and over 80% in case series [28, 29]. However, FLT3
mutations are a known resistance mechanism when venetoclax is
used in the frontline setting [21], and indeed 43% of patients who
relapsed in the VALDAC study had a detectable FLT3-ITD.
Therefore, in patients with FLT3 mutations who suffer molecular
failure, FLT3 inhibitor-based approaches offer an attractive and
highly tolerable option.

Recently three studies have demonstrated that patients with
FLT3 ITD MRD measured by NGS have extremely high rates of
relapse [24–26]. Our data suggest that intervention with FLT3
inhibition with or without other targeted therapies in these
patients has potential to significantly improve outcomes, and
safely bridge patients to allogeneic transplant. The increasing
availability of FLT3 ITD MRD assays will allow patients to be
selected for this therapy more rationally, as compared to the
somewhat empiric approach used in our study, where these
assays weren’t available in real time.
We recognise several limitations to our study. Patient identifica-

tion and data collection were retrospective, which introduces
potential selection bias, although we attempted to address this by
identifying and including all eligible patients at each participating
centre. Toxicity data was only available on a sub-group of patients,
which introduces another potential source of reporting bias.
Additionally, the choice of FLT3i was at the discretion of the
treating clinician and largely dictated by drug availability at
the time of molecular failure. Finally, the timing of response
assessments was not standardised. Nevertheless, our data
demonstrate that FLT3 inhibitor monotherapy for molecular failure
is associated with low toxicity, high rates of molecular response
and encouraging overall survival. These results provide rationale
for future evaluation of this strategy in prospective studies.
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