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One of my greatest pleasures in writing has come from the
thought that perhaps my work might annoy someone of
comfortably pretentious position. Then comes the saddening
realization that such people rarely read.

John Kenneth Galbraith

INTRODUCTION
It is widely-believed recovery of bone marrow function after a
haematopoietic cell transplant arises from pluripotent haemato-
poietic stem cells (HSCs; hence haematopoietic stem cell trans-
plant) [1], that numbers of CD34-positive cells in a graft are an
accurate proxy for numbers of HSCs [2, 3], that dose of CD34-
positive cells should be quantified by body weight and that there
is a threshold dose of CD34-positive cells required for successful
posttransplant bone marrow recovery [4–9].
In this Perspective we argue several or all of these commonly

held notions are wrong. We consider biological plausibility,
experimental data in mice and humans and advanced statistical
analyses of a dataset of recipients of cord blood cell transplants for
leukaemia. Our conclusions have important implications for
transplant practices.

EXPERIMENTAL DATA
Can we accurately identify human HSCs and are they CD34-
positive?
We start emphasizing currently there is no accurate nor precise
way to identify human haematopoietic stem cells (HSCs) [10–12].
Data from transplanting human bone marrow into immune-
deficient mice suggest 10E-6 to 10E-7 of mononuclear cells might
be HSCs, a frequency which might be higher in human umbilical

cord blood, lower in blood cells and still lower in so-called
mobilised blood cells [13]. Because most mononuclear cells are
not HSCs many people have focused on measuring CD34-positive
cells assuming human HSCs are CD34-positive. Lacking an
accurate and precise assay for humans HSCs [14–16] this is, of
course, conjecture. Moreover, in mice quiescent HSCs are CD34-
negative and express CD34 only after they begin to divide [17].
Whether this is so in humans is unknown. Other data suggest a
constantly-changing phenotype of human HSCs [11]. Regardless,
most CD34-positive cells in bone marrow, blood and umbilical
cord blood are not HSCs [14]. Because almost all CD34-positive
cells in a graft are not HSCs estimating numbers of HSCs based on
numbers of CD34-positive cells must be imprecise. For instance, if
we assume the ratio of HSCs to CD34-positive cells is 1 to 5000 in
umbilical cord blood a graft containing 40 × 10E+5 CD34-positive
cells could have 10 percent variation in numbers of HSCs because
of Poisson noise.

What cells are responsible for posttransplant recovery of bone
marrow function
Another complexity is that we don’t know which haematopoietic
cell(s) restore posttransplant bone marrow function. Data in mice
indicate many different cells including many which are not HSCs
contribute to short- and long-term posttransplant bone marrow
recovery [18–20]. Data in humans are largely consistent with data
in mice where short- and long-term bone marrow recovery are
driven by different cell types [21–23]. Even within the phenoty-
pically most primitive HSC pool individual stem cells can have very
different self-renewal potentials and different contributions to
bone marrow recovery [24–30]. Namely, not all HSCs contribute
equally to sustained multi-lineage haematopoiesis and most
show biased differentiation towards specific haematopoietic
lineages.
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CLINICAL CONSIDERATIONS
Considering the above we are left with 3 currently insoluble
problems. 1st, we cannot accurately and precisely identify human
HSCs. 2nd, we do not know which cells in a graft (HSCs, others or
most likely a combination) are responsible for short- and long-
term posttransplant recovery of bone marrow function. 3rd, it is
highly likely residual recipient haematopoietic cells contribute in
whole or part to posttransplant bone marrow recovery [31]; this is
especially likely after less intensive pretransplant conditioning
regimens (reduced-intensity [RIC] and non-myelo-ablative) but
recovery of endogenous haematopoiesis is still plausible even
after high-dose total body radiation without a transplant [32, 33] .
Despite these uncertainties transplant physicians feel com-

pelled to address 2 questions: (1) how to derive a measure for
haematopoietic potential of a graft using the number of CD34-
positive cells despite the caveats we discussed; and (2) whether
there is a threshold dose needed for successful posttransplant
bone marrow recovery.
Although numbers of CD34-positive cells in a graft and ability to

restore posttransplant bone marrow function are dissimilar,
provided the two maintain a relatively predictable ratio CD34-
positive cell dose might still be a useful surrogate. This raises the
question of how numbers of CD34-positive cells can be converted
to a dose. Presently, CD34-positive cell dose is quantified by body
weight [4–9, 34]. The biological justification for this widely-
adopted practice is unclear: In the graft we are dealing with some
cells with substantial proliferative potential, not a drug that is
stoichiometrically metabolised by the liver or excreted by the
kidneys. Mammals come in various sizes from a mouse (20 g) to
humans (70 kg) to elephants (6000 kg). Although an elephant has
many more cells than a mouse (3 × 10E+9 versus 10E+15) the
haematopoietic systems in both arise from one or a few HSCs. A
human gaining 20 kg does not suddenly have more cells (just
bigger fat cells) and his or her blood volume certainly would not
suddenly increase by 30 percent because blood volume correlates
better with lean body mass than with body weight, body mass
index or body surface area across both sexes at all Tanner stages
[35].1 Does such a person need 30 percent more CD34-positive
cells to recover posttransplant bone marrow function were we to
calculate this by body weight? Obviously no [36, 37].

Is there a required threshold dose for CD34-positive cells?
We further argue it is biologically implausible there is a threshold
dose of CD34-positive cells for successful posttransplant bone
marrow recovery. If there is a threshold dose the hazard function
for recovery of bone marrow function is expected to be zero until
the dose, however quantified, exceeds the threshold. Conversely,
if there is no threshold dose, the hazard function would
continuously increase unless the dose is zero (Fig. 1A). Previous
research that interrogated the relationship between CD34-positive
cell dose and posttransplant bone marrow recovery uniformly
analysed dose by discretising it into multiple classes (Table 1)
[38–47]. This approach cannot uncover the shape of the dose-
response curve for CD34-positive cell dose versus haematopoietic
function recovery and therefore is not suitable for answering the
question whether there is a threshold dose of CD34-positive cells
[48]. Previous studies also reported contradictory data on
correlations between CD34-positive cell dose and various
transplant endpoints such as survival [38–47]. This likely reflects

confounding co-variates including sex, age, disease, disease state,
pre- and posttransplant conditioning and immune-suppression
regimens, histo-compatibility between donor and recipient, graft-
type, development of graft-versus-host disease, interstitial pneu-
monia and others.
Consensus guidelines suggest a threshold dose of CD34-positive

cell dose ranging from 1.5 × 10E+5/kg for umbilical cord blood
cell grafts to 4 or 5 × 10E+6/kg for mobilised blood cell grafts
[4–9]. Applying this recommendation suggests only 4% of the US
cord blood inventory is suitable for single-unit transplants for
adults [49]. Theoretically, however, even one HSC is capable of
restoring posttransplant bone marrow function given sufficient
time (provided we can keep the recipient alive for a prolonged
interval) [13, 37]. Data in mice indicate some HSC clones are
highly efficient in restoring long-term bone marrow function [50].
Moreover, we reported recovery of bone marrow function in a
person exposed to acute extremely high-dose and -dose-rate
total body radiation without a transplant [32, 33], indicating the
jargon of myelo-ablative pretransplant conditioning is wrong.
Because radiation killing of cells is stochastic it is nearly
impossible ionising radiation could kill every HSC without killing
the person.

Clinical data
To help resolve these challenges and controversies and despite
our reservations we interrogated data from 619 consecutive
subjects with acute leukaemia receiving a single-unit umbilical
cord blood cell transplant (details in Supplement Table 1;
Supplement Fig. 1). We chose umbilical cord blood cell transplants
because an insufficient CD34-positive cell dose is often cited as
the reason to exclude potential recipients (mostly adults) [51] and
because umbilical cord blood likely has the highest fraction of
HSCs amongst CD34-positive cells [13]. Almost one-half of subjects
in our cohort were > 16 years. The lowest, 5th-, 10th- and 25th-
percentile values of CD34-positive cells per kg of recipient body
weight were 0.17, 0.60, 0.83 and 1.28 × 10E+5/kg. Namely, the
lowest CD34-positive cell dose was almost one-tenth of the
threshold dose according to consensus guidelines. Additionally, the
CD34-positive cells were quantified at a central laboratory
(Supplement Methods) avoiding non-standardized CD34-positive
cell quantification confounding many studies. Our dataset allowed
us to pressure-test the idea of threshold dose for successful
posttransplant bone marrow recovery.
We considered 3 expressions of CD34-positive cell dose: (1)

absolute numbers of CD34-positive cells (Abs CD34-positive); (2)
numbers of CD34-positive cells per kg of recipient body weight
(CD34-positive/BW); and (3) numbers of CD34-positive cells per
litre of recipient blood volume (CD34-positive/BV; “BV” stands for
blood volume), with blood volume estimated as described [35].
Our focus was on granulocyte recovery because analyses of RBC

and platelet recovery are confounded by pre- and posttransplant
transfusions, granulocytes are the most short-lived cells and
granulocyte recovery is most closely correlated with early
posttransplant therapy-related mortality. Analyses of survival and
other transplant endpoints are tangential to our primary concern
because of confounders such as graft-versus-host disease and
leukaemia recurrence. For each measure of CD34-positive cell dose
we calculated two concordance values: (1) concordance with
interval to granulocyte recovery (equivalent to the area under the
receiver-operating characteristic curve) [52]; and (2) concordance
with granulocyte recovery within 21 days by fitting a logistic
regression model [53]. Among the three expressions of CD34-
positive cell dose, CD34-positive/BV had the highest concordance
with granulocyte recovery (Table 2), especially in instances with
“extreme” ratios ( < 15th- or >85th-percentile values) of lean body
mass to body weight. Results were similar when subjects receiving
pretransplant radiation and/or posttransplant methotrexate were
censored (Supplement Table 2).

1For example, lean body mass (in kg) of a male or a prepubescent
female can be estimated by 0.407 × body-weight (in kg) + 26.7 ×
body height (in m) – 19.2. Each kg increase of lean body mass
translates to 83.8 ml increase of blood volume [35]. A 175 cm tall and
67 kg weight adult male has a lean body mass of 54.8 kg and a blood
volume of 4.59 L. After gaining 20 kg his lean body mass increases to
62.9 kg and his blood volume to 5.27 L, a 15 percent increase.
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We used a Bayesian Cox regression model with restricted cubic
splines to estimate the non-linear CD34-positive cell dose effect
(Supplement Methods) and roughness penalty minimization and
Markov chain Monte Carlo to estimate confidence intervals of the
dose-response curves [54, 55]. We found the hazard function for
granulocyte recovery was erratic when CD34-positive cell dose

was quantified as absolute numbers of CD34-positive cells (Fig. 1B).
In contrast, the hazard function of CD34-positive cell dose per
kilogram of recipient body weight plateaued at ≈ 1.5 once CD34-
positive/BW was > 3 × 10E+5/kg, and there was no threshold
value below which the hazard function abruptly dropped to zero
(Fig. 1C). The hazard function of CD34-positive cell dose per litre of
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Fig. 1 Dose response of CD34-positive cells. A Hazard functions for haematopoietic function recovery under two contrasting scenarios: with
or without a threshold dose. Hazard functions of Abs CD34-positive (B), CD34-positive/BW (C) and CD34-positive/BV (D) for granulocyte
recovery in the analysed umbilical cord blood cell transplant data (N= 619). Hazard is calculated with respect to the population mean. “Hazard
= 0.5”means that the instantaneous recovery rate (from day 1 posttransplant to infinity) is half-magnitude compared to the population mean.
“Hazard = 0”means zero probability of granulocyte recovery. E, F, G Relationship between CD34-positive cell dose and interval to granulocyte
recovery: Abs CD34-positive (E), CD34-positive/BW (F) and CD34-positive/BV (G) in the analysed umbilical cord blood cell transplant data
(N= 609; patients who died before granulocyte recovery are excluded from this analysis). In each panel, all the patients are divided into 5
quintiles according to the panel’s respective measure of CD34-positive cell dose. Each dot summarises one quintile, with its x and y
coordinates representing the median CD34-positive cell dose and the median interval to granulocyte recovery of the quintile. Abs absolute, BV
blood volume, BW body weight.
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recipient blood volume plateaued at ≈ 1.5 when CD34-positive
/BV was > 0.5 × 10E+7/L and the hazard remained ≈ 0.5 even
when CD34-positive/BV dropped to 0.05 × 10E+7/L, the 2.5th-
percentile value in this study cohort (Fig. 1D). Results were similar
when subjects receiving pretransplant radiation and/or posttrans-
plant methotrexate were censored (Supplement Fig. 2).
Next, we divided the subjects into quintiles according to CD34-

positive cell dose and for each quintile calculated median
log2(CD34-positive cell dose) versus interval to granulocyte
recovery. Quintile median log2(dose) and quintile median interval
to granulocyte recovery correlated the best when dose was
quantified per blood volume (r= –0.96 (CD34-positive/BV) versus
–0.85 (Abs CD34-positive) and –0.92 (CD34-positive/BW);
Fig. 1E–G). Analysis of the linear regression coefficients of quintile
median interval to granulocyte recovery versus quintile log2(CD34-
positive/BV) suggests the number of granulocytes in the blood
doubled every 1.6 days (Fig. 1G). Even in the lowest quintile of
CD34-positive/BV dose blood concentrations of NK-, CD8-positive
T-, CD4-positive T- and B normalised within 1 year posttransplant,
and all the quintiles had similar cumulative incidences of relapse
and survival (Supplement Figs. 3 & 4). In multi-variate Cox
regression analysis of granulocyte recovery CD34-positive/BV
(HR= 1.89 per 10E+7/L [1.42, 2.51]; adjusted P < 0.001) was

independently correlated with cumulative incidence of granulo-
cyte recovery (Supplement Fig. 5).

DISCUSSION
We review biological considerations and experimental data
indicating cells responsible for posttransplant bone marrow
recovery in humans cannot be accurately nor precisely quantified.
We also argue why numbers or dose of CD34-positive cells in a
graft cannot be an accurate estimate of numbers of cells
responsible for posttransplant bone marrow recovery. Never-
theless, given the several studies reporting a correlation between
numbers of CD34-positive cells and posttransplant recovery of
bone marrow function we used new statistical methods to
interrogate a large dataset of umbilical cord blood cell transplants
to prove the non-linear CD34-positive cell dose effect and show
there is no threshold dose needed for posttransplant recovery of
bone marrow function. This observation has important clinical
implications which may make more people eligible recipients of a
haematopoietic cell transplant, especially an umbilical cord blood
cell transplant, and reduced the perceived need for repeated
leukaphereses to obtain sufficient numbers of CD34-positive
cells from donors.

Table 1. Impact of low CD34-positive cell dose on posttransplant granulocyte recovery in several large-cohort studies.

Reference Graft-type Donor-type N Definition of low
dose (/kg)

Lowest dose
(/kg)

Impact of low
dose on
granulocyte
recovery

[38] Mobilised blood Self 508 < 3.00 × 10E+6 1.90 × 10E+6 Adverse

[39] Mobilised blood Unrelated (59% HLA-identical) 611 ≤ 3.8 × 10E+6 0.4 × 10E+6 Adverse

[40] Mobilised blood HLA-identical sibs 370 < 4 × 10E+6 – Adverse

[40] Mobilised blood Unrelated (76% HLA-identical) 687 < 6 × 10E+6 – NS

[41] Mobilised blood Various 705 < 1.08 × 10E+7 8.3 × 10E+5 Adverse

[43] Mobilised blood HLA-haplotype matched < 348a ≤ 1.01 × 10E+6 1.3 × 10E+5 Adverse

[44] Mobilised blood Related (62% HLA-identical) 2919 < 1 × 10E+6 – Adverse

[46] Mobilised blood Mostly HLA-identical sibs 851 < 4.5 × 10E+6 6.5 × 10E+5 Adverse

[47] Mobilised blood HLA-identical sibs 377 < 5.0 × 10E+6 1.3 × 10E+6 Adverse

[42] Umbilical cord
blood

Unrelated (2% HLA-identical) 306 < 5 × 10E+4 1.5 × 10E+4 Adverse

[45] Umbilical cord
blood

Unrelated ( ≈ 5% HLA-identical) 1351 < 6.1 × 10E+4 – Adverse

– not available, NS not significant.
aThis study included both G-CSF-primed bone marrow cell transplants and mobilised blood cell transplants. The exact number of blood cell transplants was
not stated.

Table 2. Concordance of CD34-positive cell dose with granulocyte recovery in the analysed umbilical cord blood cell transplant data.

N Absolute CD34-positive CD34-positive per BW CD34-positive per BV

Concordance with interval to recovery

All cases 619 0.548 0.607 0.607

“Extreme” LBM/BW ratioa 186 0.524 0.606 0.610

“Normal” LBM/BW ratioa 433 0.557 0.609 0.609

Concordance with successful recovery by d 21 posttransplantb

All cases 609 0.625 0.654 0.672

“Extreme” LBM/BW ratioa 183 0.575 0.592 0.636

“Normal” LBM/BW ratioa 426 0.640 0.698 0.702

BV blood volume, BW body weight, LBM lean body mass.
a
“Extreme”, < 15th- or > 85th-percentile values; “normal“, other cases.
bPatients who died before granulocyte recovery were excluded from this analysis.
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Despite no threshold dose for posttransplant granulocyte recovery,
physicians may want an estimate of the speed with which this
occurs. To accomplish this we found CD34-positive cell dose should
be calculated based on recipient blood volume, not body weight.
Our analyses indicate a near-perfect linear relationship between
log2(CD34-positive/BV) and interval to granulocyte recovery. Using
this metric the expansion of granulocytes is close to exponential
immediately posttransplant. Because of the rarity of HSCs in a
haematopoietic cell graft the observed correlation between
numbers or dose of CD34-positive cells and rate of posttransplant
granulocyte recovery is consistent with the hypothesis precursor
and progenitor cells operate in this setting rather than HSCs.
(Contradictory data have been reported using gene marker studies
[56].) An online calculator for CD34-positive cell dose by recipi-
ent blood volume is available at https://skirt-calculator.shinyapps.io/
CD34-positive_Cell_Dose_Calculator/.
Our study has limitations. 1st, we suggest our conclusions apply

to other graft types such as bone marrow and blood but this
needs validation. 2nd, our analyses of the clinical dataset were
retrospective and potentially biased. 3rd, although we studied a
range of CD34-positive cell doses none was < 0.02 × 10E+7/L or <
0.17 × 10E+5/kg.
In our Perspective, we challenge the notion haematopoietic cell

transplants are proved to be stem cell transplants. We also
challenge current thinking and practices regarding whether CD34-
positive cell dose in a graft should be used as a proxy for
predicting short- and long-term posttransplant bone marrow
recovery and, if there is no alternative, how CD34-positive cell
dose should be quantified. Lastly, we show there is no threshold
dose of CD34-positive cells (regardless of how dose is quantified)
for successful posttransplant recovery of bone marrow function.
Physicians are conservative and reluctant to change long-

established practices regardless of their validity. Our conclusions
challenge several sacred cows and we anticipate resistance to
accepting them. It is important to recall many firmly-held medical
practices are later proved ineffective or even harmful. These
situations are termed medical reversals and there are many
examples reviewed in recent biomedical literature [57–59]. We
look forward to validation of our conclusions.

DATA AVAILABILITY
Clinical data are available upon reasonable request to the corresponding authours.
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