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TO THE EDITOR:
Philadelphia chromosome–positive (Ph+) acute lymphoblastic
leukemia (ALL) accounts for approximately 25% to 30% of cases
of B-cell ALL and is characterized by t(9;22) that created a
BCR::ABL1 fusion gene encoding a chimeric, leukemogenic
tyrosine kinase [1]. Historically, patients with this subtype of ALL
had a poor prognosis, but implementation of allogeneic
hematopoietic cell transplant and, more recently, tyrosine kinase
inhibitors (TKIs), and/or blinatumomab (Blincyto, Amgen), a CD3-
CD19 bispecific T cell–engaging antibody, early in the treatment
has favorably impacted outcome [2, 3]. Nevertheless, dissecting
the leukemogenic mechanisms of Ph+ ALL may reveal additional
“druggable” targets and further improve the outlook of these
patients with safer and more effective treatment approaches.
MicroRNAs (miRNAs) are short non-coding RNA molecules that

downregulate target messenger (m)RNAs and, in turn, their
encoded proteins. MiR-126-3p (miR-126) is highly expressed in
normal hematopoietic stem and progenitor cells (HSPC) and
maintains self-renewal capacity [4]. Aberrantly increased miR-126
levels have been shown to expand quiescent leukemia stem cells
(LSCs) both in acute myeloid leukemia (AML) [5–7] and chronic
myeloid leukemia (CML) [8, 9], and initiate and maintain acute
lymphoblastic leukemia (ALL) [10]. Of note, while miR-126
supports LSC homeostasis, its production may be blocked by
the same aberrant kinases (e.g., FLT3-ITD, BCR::ABL1) that drive
leukemic growth [9, 11]. Under these circumstances, LSCs depend
on a miR-126 supply from bone marrow (BM) endothelial cells
(ECs) [9, 12]. Conversely, while TKIs kill proliferating leukemic
blasts, they may restore endogenous production of mature miR-
126, which favors persistence and expansion of LSCs, thereby,
representing an intrinsic mechanism of cell resistance to these
agents [9, 12]. In agreement with this, we observed lower miR-126
levels in BM blasts from BCR::ABL1 ALL mice compared to BM cells
from normal wild-type (wt) mice (Supplementary Fig. 1A) and
showed that treatment with Dasatinib, a broadly used TKI for Ph+
ALL, increased the endogenous miR-126 (Supplementary Fig. 1B).
To fully elucidate the leukemogenic role of miR-126 in

BCR::ABL1 ALL, we produced a series of genetically engineered

mouse models (GEMMs) of p190-BCR::ABL1 ALL with either global
or compartmentalized (hematopoietic or endothelial) miR-126
overexpression (OE) or knockout (KO). The p190-BCR::ABL1
transgenic mice develop ALL, a disease transplantable in congenic
recipients [13, 14], and have a median survival of 80 days. To
produce BCR::ABL1 ALL mice with global miR-126 OE, we crossed a
BCR::ABL1 ALL mouse with a Spred1 KO (Spred1−/−) mouse [8]
(Fig. 1a). Spred1, an inhibitor of RAS small GTPases, is both a miR-
126 target and a negative regulator of miR-126 biogenesis [9].
Spred1−/− mice do not develop leukemia as part of their
phenotype, but constitutively express higher levels of miR-126,
thereby, representing a functional model of miR-126 OE [8, 9].
Consistent with these results, we observed significantly reduced
levels of Cdkn2aip, a reportedly downregulated miR-126 target in
miR-126 OE induced B-ALL [10], in BCR::ABL1/Spred1−/− versus
BCR::ABL1/Spred1+/+ mice (Supplementary Fig. 1C). The
BCR::ABL1/Spred1−/− mouse developed a more aggressive ALL
with higher white blood cell (WBC) counts and circulating pro-B
blasts (B220+CD19+CD43+IgM-) and shorter survival (median: 61
vs 80 days, p= 0.0006) than the BCR::ABL1/Spred1+/+ controls
(Fig. 1a; Supplementary Fig. 1D).
To compartmentalize miR-126 upregulation, we then generated

BCR::ABL1 ALL GEMMs overexpressing miR-126 in hematopoietic or
endothelial cells. We crossed Spred1flox(f)/f mice [8] with Vav-icre+
(Jax lab, #8610) or Tie2-Cre+ (Jax lab, #8863) mice, respectively,
and obtained Spred1f/fVav-icre+ (miR-126 OE in hematopoietic
cells) and Spred1f/fTie2-Cre+ (miR-126 OE in ECs) mice. We then
crossed these mice with p190-BCR::ABL1 mice and, respectively,
obtained BCR::ABL1/Spred1f/fVav-icre+ (hereafter called BCR::ABL1/
Spred1ALLΔ/Δ) and BCR::ABL1/Spred1f/fTie2-Cre+ (hereafter called
BCR::ABL1/Spred1ECΔ/Δ) mice (Fig. 1b). The BCR::ABL1/Spred1ALLΔ/Δ

mouse overexpressed miR-126 in ALL cells, but not in ECs (Fig. 1b,
left), had reduced mRNA and protein expression of Cdkn2aip in the
ALL cells (Supplementary Fig. 2A) and a more aggressive disease,
i.e., higher percentages of circulating pro-B blasts and shorter
survival (median: 70 vs 91 days, p= 0.01) (Fig. 1b, left) than the
BCR::ABL1/miR-126ALL+/+ controls. The BCR::ABL1/Spred1ECΔ/Δ

mice, which overexpressed miR-126 in ECs, also had a more
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aggressive ALL than BCR::ABL1/Spred1EC+/+ controls, with
increased pro-B blasts and shorter survival (median: 64 vs 98 days,
p= 0.0007) (Fig. 1b, right). Of note, consistent with EC-miR-126 OE,
the BCR::ABL1/Spred1ECΔ/Δ mouse presented with an increase in
BM CD31+Sca-1high ECs and arterioles (Supplementary Fig. 3) that
reportedly are a major source of miR-126 for LSCs via extracellular

vesicles [9, 12]. In agreement with these results, we observed
increased miR-126 and reduced Cdkn2aip levels in BM ALL cells
from BCR::ABL1/Spred1ECΔ/Δ mice versus those from BCR::ABL1/
Spred1EC+/+ control mice (Supplementary Fig. 2B). To confirm the
leukemogenic role of the EC miR-126, we transplanted BM cells
from p190-BCR::ABL1 mice into Spred1ECΔ/Δ or Spred1EC+/+ normal
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(i.e., non-leukemic) recipients (Supplementary Fig. 4). Spred1ECΔ/Δ

recipients developed a more aggressive ALL, with significantly
higher WBC counts and pro-B blasts at 4 weeks after transplanta-
tion and had a shorter survival (median: 29 vs 38 days, p= 0.005)
than the Spred1EC+/+ recipient controls (Supplementary Fig. 4).
To confirm the relevance of miR-126 to BCR::ABL1 ALL, we also

produced BCR::ABL1 ALL GEMMs with miR-126 KO. Firstly, we
generated p190-BCR::ABL1 mice with hematopoietic miR-126 KO,
by crossing the miR-126f/f mouse with the Vav-icre+mouse and in
turn the miR-126f/fVav-icre+ (miR-126 KO in hematopoietic cells)
mouse with the p190-BCR::ABL1 mouse (Fig. 1c, left). We obtained
a BCR::ABL1/miR-126f/fVav-icre+ (hereafter called BCR::ABL1/miR-
126ALLΔ/Δ) mouse with lower miR-126 and higher Cdkn2aip levels
in the ALL blasts, lower WBC counts and pro-B blasts, and longer
survival (median: 91 vs 70 days, p= 0.02) than the BCR::ABL1/miR-
126f/f/Vav-icre- (BCR::ABL1/miR-126ALL+/+) control (Fig. 1c, left;
Supplementary Fig. 5A). To compartmentalize the miR-126 KO to
ECs, we then crossed the miR-126f/f mouse with the Tie2-cre+
mouse and, in turn, the miR-126f/f/Tie2-cre+ (miR-126ECΔ/Δ) mouse
with the p190-BCR::ABL1 mouse (Fig. 1c, right). The BCR::ABL1/
miR-126f/f/Tie2-cre+ (also called BCR::ABL1/miR-126ECΔ/Δ) mouse
had significantly lower EC-miR-126 levels and lived longer
(median: 98 vs 77 days, p= 0.004; Fig. 1c, right) than the
BCR::ABL1/miR-126EC+/+ mice. ALL blasts from BCR::ABL1/miR-
126ECΔ/Δ mice also had significantly lower miR-126 and higher
Cdkn2aip levels than those from BCR::ABL1/miR-126EC+/+ mice
(Supplementary Fig. 5B). To confirm the leukemogenic role of the
EC-miR-126 supply, we also transplanted BM cells from diseased
p190-BCR::ABL1 mice into miR-126ECΔ/Δ or miR-126EC+/+ normal
recipients (Supplementary Fig. 6). MiR-126ECΔ/Δ recipients devel-
oped a less aggressive ALL, with significantly lower WBC counts
and pro-B blasts, and longer survival (median: 57 vs 42 days,
p= 0.006) than the miR-126EC+/+ recipient controls (Supplemen-
tary Fig. 6).
Taken together, these results established a role for miR-126 in

sustaining an aggressive p190-BCR::ABL1 ALL phenotype and led
us to hypothesize miR-126 as a potentially druggable target. We
previously reported on miRisten, a novel anti-miR-126 oligonu-
cleotide, that was effectively taken up and downregulated miR-
126 in ECs and leukemic cells [9, 12] (see also Supplementary
Fig. 7). To test the activity of miRisten against BCR::ABL1 ALL blasts
in vivo, we synchronized a cohort of mice for ALL development by
transplanting CD45.2 p190-BCR::ABL1 ALL blasts into congenic
CD45.1 recipients. The transplanted mice, divided randomly into 4

groups, were then treated with SCR (20 mg/kg, IV), miRisten
(20 mg/kg, IV), SCR + Dasatinib (5 mg/kg, daily by oral gavage), or
miRisten + Dasatinib for 3 weeks (Fig. 2a). Increased expression of
Cdkn2aip (Supplementary Fig. 8A) and longer survival (median
survival: 54 vs 42 days, p= 0.03; Fig. 2a) were observed in
miRisten-treated mice compared with SCR-treated controls. Of
note, miRisten plus TKI had the best outcome with a significantly
increased survival compared with SCR plus TKI (median survival:
not reached vs 127 days, p= 0.03; Fig. 2a; Supplementary Fig. 8B).
Of note, 9 out of 10 mice in the miRisten+TKI-treated group
remained alive after 200 days with no evidence of leukemic cells
(CD45.2+) at necropsy (Supplementary Fig. 8C), suggesting that
they were potentially cured.
To assess the relevance of these results to human disease, we

transplanted primary human Ph+ ALL cells into NSG mice. At day
30 after transplantation, the mice were randomly divided into 4
groups and treated with SCR (20 mg/kg, IV), miRisten (20 mg/kg,
IV), SCR + Dasatinib (5 mg/kg, daily by oral gavage), or miRisten +
Dasatinib for 3 weeks, followed by assessment of human cell
engraftment in PB, BM and spleen and survival (Fig. 2b). MiRisten-
treated mice had significantly increased levels of the miR-126
target Cdkn2aip (Supplementary Fig. 8D) and a significantly
reduced burden of human (h) ALL pro-B blasts
(hCD45+CD19+CD34+) in PB, BM and spleen at the end of
treatment and lived longer (median: 38.5 vs 29 days, p= 0.04;
Fig. 2b; Supplementary Fig. 8E) than SCR-treated mice. TKI-treated
mice also had a significantly reduced ALL pro-B blasts in PB, BM
and spleen upon completion of treatment and lived longer than
miRisten-treated and SCR-treated mice (median survival: 62 vs
38.5 vs 29 days for TKI vs miRisten vs SCR; TKI vs miRisten,
p= 0.001; TKI vs SCR: p < 0.0001; Fig. 2b; Supplementary Fig. 8E).
Mice treated with miRisten plus TKI had the lowest disease burden
and lived significantly longer than the other groups (e.g., median
survival of miRisten+ TKI vs SCR+ TKI: not reached vs 62 days,
p= 0.03; Fig. 2b; Supplementary Fig. 8E). Only 2 out of 8 mice in
the miRisten+TKI-treated group vs 7 out of 9 mice in SCR+ TKI-
treated group died after monitoring them for 100 days. At this
time point, those surviving mice had no evidence of human cells
(hCD45+) in PB, BM or spleen, suggesting that they were
potentially cured.
In summary, our results support a leukemogenic role of miR-126

in BCR::ABL1 ALL cells. Of note, while we used Spred1 KO to
induce endogenous miR-126 upregulation and obtain functional
miR-126 OE models of BCR::ABL1 ALL, loss of Spred1, a negative

Fig. 1 Both hematopoietic and endothelial miR-126 OE promote ALL progression. a Schematic design of the mouse crossing and
phenotypic comparison. P190-BCR::ABL1 ALL mice were crossed with Spred1 KO (Spred1−/−) mice to generate BCR::ABL1/Spred1−/− (miR-126
OE globally) mice. MiR-126-3p levels in BM ALL cells (B220+CD19+) and endothelial cells (ECs, CD45−Ter119-CD31+) by Q-RT-PCR (n= 6 mice
per group), white blood cell (WBC) counts (n= 12 mice per group), percentage of pro-B blasts (B220+CD19+CD43+IgM-) in peripheral blood
(PB, n= 12 mice per group) by flow cytometry analysis, and survival (n= 13 BCR::ABL1/Spred1−/− mice and n= 17 BCR::ABL1/Spred1+/+ mice)
in 6-week-old BCR::ABL1/Spred1−/− versus BCR::ABL1/Spred1+/+ mice. b Schematic design of the mouse crossing and phenotypic
comparison. Left panels: P190-BCR::ABL1 mice were crossed with Spred1f/fVav-icre+ mice to obtain BCR::ABL1/Spred1f/fVav-icre+ (also called
BCR::ABL1/Spred1ALLΔ/Δ, miR-126 OE in ALL cells) mice. MiR-126-3p levels in BM ALL cells (B220+CD19+, n= 5 mice per group) and ECs
(CD45-Ter119-CD31+, n= 6 mice per group) by Q-RT-PCR, PB pro-B blasts by flow cytometry analysis (n= 12 BCR::ABL1/Spred1ALL+/+ mice
and n= 7 BCR::ABL1/Spred1ALLΔ/Δ mice), and survival (n= 16 mice per group) in 6-week-old BCR::ABL1/Spred1ALLΔ/Δ versus BCR::ABL1/
Spred1ALL+/+ mice. Right panels: P190-BCR::ABL1 mice were crossed with Spred1f/fTie2-cre+ mice to obtain BCR::ABL1/Spred1f/fTie2-cre+
(also called BCR::ABL1/Spred1ECΔ/Δ, miR-126 OE in ECs) mice. MiR-126-3p levels in BM ECs by Q-RT-PCR (n= 6 mice per group), PB pro-B blasts
by flow cytometry analysis (n= 8 mice per group), and survival (n= 14 mice per group) in 6-week-old BCR::ABL1/Spred1ECΔ/Δ versus
BCR::ABL1/Spred1EC+/+ mice. c Schematic design of the mouse crossing and phenotypic comparison. Left panels: P190-BCR::ABL1 mice were
crossed with miR-126f/fVav-icre+ mice to obtain BCR::ABL1/miR-126f/fVav-icre+ (also called BCR::ABL1/miR-126ALLΔ/Δ, miR-126 KO in ALL cells)
mice. MiR-126-3p levels in BM ALL (B220+CD19+) cells by Q-RT-PCR (n= 5 mice per group), PB pro-B blasts by flow cytometry analysis (n= 12
BCR::ABL1/miR-126ALL+/+ mice and n= 7 BCR::ABL1/miR-126ALLΔ/Δ mice), and survival (n= 23 BCR::ABL1/miR-126ALL+/+ mice and n= 11
BCR::ABL1/miR-126ALLΔ/Δ mice) in 6-week-old BCR::ABL1/miR-126ALLΔ/Δ versus BCR::ABL1/miR-126ALL+/+ mice. Right panels: P190-BCR::ABL1
mice were crossed with miR-126f/fTie2-cre+ mice to obtain BCR::ABL1/miR-126f/fTie2-cre+ (also called BCR::ABL1/miR-126ECΔ/Δ, miR-126 KO in
ECs) mice. MiR-126-3p levels in BM ECs (CD45−Ter119−CD31+) by Q-RT-PCR (n= 6 mice per group), PB pro-B blasts by flow cytometry analysis
(n= 8 mice per group), and survival (n= 22 mice per group) in 6-week-old BCR::ABL1/miR-126ECΔ/Δ versus BCR::ABL1/miR-126EC+/+ mice. ALL
acute lymphoblastic leukemia, OE overexpression, KO knockout, BM bone marrow, EC endothelial cells, B::A BCR::ABL1, PB peripheral blood,
WBC white blood cell. Results shown represent mean ± SEM. Significance values: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Dasatinib for 3 weeks. Upon completion of treatment, representative plots of human (h) ALL cell engraftment (hCD45+) in PB and survival of
the treated ALL PDX are shown. TKI tyrosine kinase inhibitor, ALL acute lymphoblastic leukemia, WBC white blood cell, PB: peripheral blood,
BM bone marrow, Das Dasatinib. Results shown represent mean ± SEM. Significance values: *p < 0.05; **p < 0.01; ****p < 0.0001.
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regulator of the pro-leukemogenic RAS-MAPK signaling [8, 15],
might itself contribute to the leukemic phenotype, independently
of miR-126 levels. Nevertheless, our current and previous work
both support Spred1 KO models as useful tools to study molecular
mechanisms and pharmacological targeting of miR-126 OE-
dependent leukemogenesis [10]. Accordingly, we showed that
the miR-126 inhibitor miRisten, alone or in combination with TKI,
had significant antileukemic activity in these models. To this end,
we showed 90% complete remission and leukemia-free survival of
p190-BCR::ABL1 ALL mice and 75% of Ph+ ALL patient-derived
xenografts (PDXs) treated with miRisten and TKI. With recent
emerging data that support chemotherapy-free approaches for Ph
+ ALL [2, 3], miR-126 targeting may provide an additional
therapeutic opportunity for these otherwise poor-risk patients.
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