Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

A novel lncRNA SNHG29 regulates EP300- related histone acetylation modification and inhibits FLT3-ITD AML development

Abstract

Internal tandem duplication (ITD) mutations within the FMS-like tyrosine kinase-3 (FLT3) occur in up to 25% of acute myeloid leukemia (AML) patients and indicate a very poor prognosis. The role of long noncoding RNAs (lncRNAs) in FLT3-ITD AML progression remains unexplored. We identified a novel lncRNA, SNHG29, whose expression is specifically regulated by the FLT3-STAT5 signaling pathway and is abnormally down-regulated in FLT3-ITD AML cell lines. SNHG29 functions as a tumor suppressor, significantly inhibiting FLT3-ITD AML cell proliferation and decreasing sensitivity to cytarabine in vitro and in vivo models. Mechanistically, we demonstrated that SNHG29’s molecular mechanism is EP300-binding dependent and identified the EP300-interacting region of SNHG29. SNHG29 modulates genome-wide EP300 genomic binding, affecting EP300-mediated histone modification and consequently influencing the expression of varies downstream AML-associated genes. Our study uncovers a novel molecular mechanism for SNHG29 in mediating FLT3-ITD AML biological behaviors through epigenetic modification, suggesting that SNHG29 could be a potential therapeutic target for FLT3-ITD AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of SNHG29 in FLT3-ITD and FLT3-WT AML cells.
Fig. 2: Molecular characteristics and expression regulation of SNHG29 in FLT3-ITD AML cells.
Fig. 3: SNHG29 is associated with proliferation and drug sensitivity of FLT3-ITD AML cells.
Fig. 4: SNHG29 inhibits growth and prompts drug resistance of FLT3-ITD AML cells in vivo.
Fig. 5: SNHG29 interacts with histone acetyltransferase EP300.
Fig. 6: SNHG29 modulates EP300 genomic binding.
Fig. 7: SNHG29 reduces EP300 enrichment in the promoter region of multiple leukemia-related genes.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.

    Article  PubMed  Google Scholar 

  2. Kiyoi H, Kawashima N, Ishikawa Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020;111:312–22.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. J Hematol Oncol. 2011;4:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kazi JU, Rönnstrand L. FMS-like tyrosine kinase 3/FLT3: from basic science to clinical implications. Physiol Rev. 2019;99:1433–66.

    Article  CAS  PubMed  Google Scholar 

  5. Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med. 2019;381:1728–40.

    Article  CAS  PubMed  Google Scholar 

  6. McMahon CM, Ferng T, Canaani J, Wang ES, Morrissette JJD, Eastburn DJ, et al. Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia. Cancer Discov. 2019;9:1050–63.

    Article  CAS  PubMed  Google Scholar 

  7. Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T. Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci. 2013;70:4785–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Delás MJ, Sabin LR, Dolzhenko E, Knott SR, Munera Maravilla E, Jackson BT, et al. lncRNA requirements for mouse acute myeloid leukemia and normal differentiation. Elife. 2017;6:e25607.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arora R, Lee Y, Wischnewski H, Brun CM, Schwarz T, Azzalin CM. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun. 2014;5:5220.

    Article  CAS  PubMed  Google Scholar 

  10. Sun LY, Li XJ, Sun YM, Huang W, Fang K, Han C, et al. LncRNA ANRIL regulates AML development through modulating the glucose metabolism pathway of AdipoR1/AMPK/SIRT1. Mol Cancer. 2018;17:127.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Feng Y, Hu S, Li L, Zhang S, Liu J, Xu X, et al. LncRNA NR-104098 Inhibits AML Proliferation and Induces Differentiation Through Repressing EZH2 Transcription by Interacting With E2F1. Front Cell Dev Biol. 2020;8:142.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Papaioannou D, Petri A, Dovey OM, Terreri S, Wang E, Collins FA, et al. The long non-coding RNA HOXB-AS3 regulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia. Nat Commun. 2019;10:5351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luo H, Zhu G, Xu J, Lai Q, Yan B, Guo Y, et al. HOTTIP lncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice. Cancer Cell. 2019;36:645–59.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin N, Yao Z, Xu M, Chen J, Lu Y, Yuan L, et al. Long noncoding RNA MALAT1 potentiates growth and inhibits senescence by antagonizing ABI3BP in gallbladder cancer cells. J Exp Clin Cancer Res. 2019;38:244.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.

    Article  CAS  PubMed  Google Scholar 

  16. Franco HL, Nagari A, Malladi VS, Li W, Xi Y, Richardson D, et al. Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Res. 2018;28:159–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cai T, Zhang Q, Wu B, Wang J, Li N, Zhang T, et al. LncRNA-encoded microproteins: a new form of cargo in cell culture-derived and circulating extracellular vesicles. J Extracell Vesicles. 2021;10:e12123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun L, Wang W, Han C, Huang W, Sun Y, Fang K, et al. The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation. Mol Cell. 2021;81:4493–508.e9.

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Liu X, Cui X, Tan Y, Wang Q, Wang Y, et al. LncRNA PRADX-mediated recruitment of PRC2/DDX5 complex suppresses UBXN1 expression and activates NF-κB activity, promoting tumorigenesis. Theranostics. 2021;11:4516–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang FW, Cao CH, Han K, Zhao YX, Cai MY, Xiang ZC, et al. APC-activated long noncoding RNA inhibits colorectal carcinoma pathogenesis through reduction of exosome production. J Clin Invest. 2019;129:727–43.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene. 2000;19:624–31.

    Article  CAS  PubMed  Google Scholar 

  22. Spiekermann K, Bagrintseva K, Schwab R, Schmieja K, Hiddemann W. Overexpression and constitutive activation of FLT3 induces STAT5 activation in primary acute myeloid leukemia blast cells. Clin Cancer Res. 2003;9:2140–50.

    CAS  PubMed  Google Scholar 

  23. Uttarkar S, Dassé E, Coulibaly A, Steinmann S, Jakobs A, Schomburg C, et al. Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood. 2016;127:1173–82.

    Article  CAS  PubMed  Google Scholar 

  24. He P, Zhang C, Ji Y, Ge MK, Yu Y, Zhang N, et al. Epithelial cells-enriched lncRNA SNHG8 regulates chromatin condensation by binding to Histone H1s. Cell Death Differ. 2022;29:1569–81.

  25. Liu HT, Zou YX, Zhu WJ, Sen L, Zhang GH, Ma RR, et al. lncRNA THAP7-AS1, transcriptionally activated by SP1 and post-transcriptionally stabilized by METTL3-mediated m6A modification, exerts oncogenic properties by improving CUL4B entry into the nucleus. Cell Death Differ. 2022;29:627–41.

    Article  CAS  PubMed  Google Scholar 

  26. Zhan T, Rindtorff N, Betge J, Ebert MP, Boutros M. CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol. 2019;55:106–19.

    Article  CAS  PubMed  Google Scholar 

  27. Buquicchio FA, Satpathy AT. Interrogating immune cells and cancer with CRISPR-Cas9. Trends Immunol. 2021;42:432–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016;539:452–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220:e202009045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tan YT, Lin JF, Li T, Li JJ, Xu RH, Ju HQ. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun (Lond). 2021;41:109–20.

    Article  PubMed  Google Scholar 

  31. Yusenko MV, Biyanee A, Andersson MK, Radetzki S, von Kries JP, Stenman G, et al. Proteasome inhibitors suppress MYB oncogenic activity in a p300-dependent manner. Cancer Lett. 2021;520:132–42.

    Article  CAS  PubMed  Google Scholar 

  32. Saeed S, Logie C, Francoijs KJ, Frigè G, Romanenghi M, Nielsen FG, et al. Chromatin accessibility, p300, and histone acetylation define PML-RARα and AML1-ETO binding sites in acute myeloid leukemia. Blood. 2012;120:3058–68.

    Article  CAS  PubMed  Google Scholar 

  33. Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol. 1999;19:764–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He ZX, Wei BF, Zhang X, Gong YP, Ma LY, Zhao W. Current development of CBP/p300 inhibitors in the last decade. Eur J Med Chem. 2021;209:112861.

    Article  CAS  PubMed  Google Scholar 

  35. Huang YH, Cai K, Xu PP, Wang L, Huang CX, Fang Y, et al. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct Target Ther. 2021;6:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garcia-Carpizo V, Ruiz-Llorente S, Sarmentero J, González-Corpas A, Barrero MJ. CREBBP/EP300 bromodomain inhibition affects the proliferation of AR-positive breast cancer cell lines. Mol Cancer Res. 2019;17:720–30.

    Article  CAS  PubMed  Google Scholar 

  37. Palazzo AF, Koonin EV. Functional long non-coding RNAs evolve from junk transcripts. Cell. 2020;183:1151–61.

    Article  CAS  PubMed  Google Scholar 

  38. Rack JGM, Lutter T, Kjæreng Bjerga GE, Guder C, Ehrhardt C, Värv S, et al. The PHD finger of p300 influences its ability to acetylate histone and non-histone targets. J Mol Biol. 2014;426:3960–72.

    Article  CAS  PubMed  Google Scholar 

  39. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471:189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Fujian Provincial Health and Family Planning Commission Medical Innovation Fund (No.: 2018-CX-5 and 2019-CX-2), the Natural Science Foundation of Fujian Province, Fujian, China (No.: 2021J01389, 2020J011098, and 2022J0112), and the High-level Hospital Foster Grants from Fujian Provincial Hospital, Fujian Province, China (No.: 2019HSJJ15).

Author information

Authors and Affiliations

Authors

Contributions

SJ and LS conceptualized the study; SJ, LS, ZJ, YXL, and CDN designed the experiments; LS, ZJ, LYB, and CZZ performed the experiments; SJ, LS, LYB, and ZJ produced the figures; LS and SJ wrote the original manuscript; SJ and CWM reviewed and edited the manuscript; SJ, LS, and CBY were responsible for funding application; SJ provided supervision. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Jin Shang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhou, J., Ye, X. et al. A novel lncRNA SNHG29 regulates EP300- related histone acetylation modification and inhibits FLT3-ITD AML development. Leukemia 37, 1421–1434 (2023). https://doi.org/10.1038/s41375-023-01923-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-01923-y

Search

Quick links