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To determine the overall tumor microenvironment (TME), characteristics, and transition mechanisms in primary central nervous
system lymphoma (PCNSL), we performed spatial transcriptomics and matched the corresponding single-cell sequencing data of
PCNSL patients. We found that tumor cells may achieve a “TME remodeling pattern” through an “immune pressure-sensing model”,
in which they could choose to reshape the TME into a barrier environment or a cold environment according to the immune
pressure. A key FKBP5+ tumor subgroup was found to be responsible for pushing tumors into the barrier environment, which
provides a possible way to evaluate the stage of PCNSL. The specific mechanism of the TME remodeling pattern and the key
molecules of the immune pressure-sensing model were identified through the spatial communication analysis. Finally, we
discovered the spatial and temporal distributions and variation characteristics of immune checkpoint molecules and CAR-T target
molecules in immunotherapy. These data clarified the TME remodeling pattern of PCNSL, provided a reference for its
immunotherapy, and provided suggestions for the TME remodeling mechanism of other cancers.
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INTRODUCTION
Tumor microenvironment (TME) plays an important role in
tumorigenesis, development, metastasis and drug sensitivity [1].
Knowledge of tumor-immune system interactions has provided a
basis for rational guidance on patient stratification and surgical
strategies, as well as a more comprehensive understanding of
possible intervention points and the causes of treatment failure
[2–4]. Based on the tumor-immune system interaction pattern, a
more comprehensive classification method classifies the TME
into four main types — “hot”, “invasive margin excluded (IME)”,
“invasive margin immunosuppressed (IMS)”, and “cold” [5]. It has
been reported that in some tumors, such as colon cancer and
melanoma, the hotter the TME is, the better the patient survival
[6, 7]. However, the high heterogeneity of the TME remains a key
barrier to the understanding and treatment of cancer, suggesting
that mapping the composition and functional status of the
tumor-immune system in the TME is of great significance. Many
efforts have uncovered some variations in TME heterogeneity
and concurrence that accompany malignancy in different cancer
types. However, most studies have focused on the composition
of TME and largely ignored its spatial distribution specificity [8].
Therefore, a detailed understanding of the progression of
phenotypic changes that occur during the transition of oncogenic

status, as well as the molecular drivers of this transition, remains to
be explored.
Primary central nervous system lymphoma (PCNSL), a highly

invasive non-Hodgkin lymphoma, occurs in the central nervous
system (CNS), including the brain, spine, cerebrospinal fluid (CSF)
and eye [9, 10]. Patient survival is generally low compared to
lymphomas outside the CNS, and PCNSL that fails first-line treatment
has a poor prognosis, which makes the treatment of this disease
challenging [11]. Although a previous study investigated the cell
composition and gene expression patterns of PCNSL at single-cell
level [12], the different space positions of the cells in one TME were
still in a mixed state with the process of sample preparation and
sequencing, thus missing the spatial orientation. Therefore, combin-
ing new methods to clarify the spatial and temporal development
patterns of the TME and the key occurrence mechanism is of great
importance. At the same time, current research suggests that blood-
brain barrier permeability increases after tumor occurrence, and the
TME in the brain has cell types similar to those outside the brain [13].
Therefore, our study on PCNSL is likely to provide useful clues for the
TME study of other solid tumors as well.
Here, 14964 single-cell transcriptomes of PCNSL were combined

with spatial transcriptome analyses of hot, IME, IMS, and cold TMEs.
The TMEs were characterized. In brief, the main cell types in the TME
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of PCNSL patients were identified by single cell sequencing, and
were mapped to the corresponding spatial locations in 4 TMEs.
Through integrative analysis, we defined and annotated tumor cell
subpopulations according to their spatial distribution and functional
characteristics and found that various tumor cells work together to
reshape the TME into a barrier or cold environment through
an “immune pressure-sensing model”, thus realizing the “TME
remodeling pattern”. A key FKBP5+ tumor subgroup was found to
be closely associated with TME remodeling, which provides a
possible method for assessing brain tumor staging. The spatial
communication mode between tumor cells and immune cells in
each TME was also identified, thus refining the specific mechanism
of the TME remodeling pattern and identifying the key molecules of
the immune pressure-sensing model. Corresponding treatment
suggestions were proposed according to the spatial characteristics
of each TME in current PCNSL immunotherapy. These results reveal
the spatial heterogeneity of PCNSL, highlight the localization and
status of cell types and potential intercellular signals in the TME,
and provide resources for further research on TMEs and updating
immunotherapy methods.

MATERIALS AND METHODS
Human patient samples
All patient tissue sections of PCNSL used in the study were obtained
from the Pathology Department of Qilu Hospital, and all patients signed

informed consent forms before sampling. After screening qualified patient
sections, pathologists scored the sections according to the immune
scoring system, and finally screened out 4 tissue sections that met the
main types of TMEs.

Spatial transcriptomics
Slide preparation. Spatial transcriptomics slices print 4 identical
6.5 × 6.5 mm capture regions, each with 5000 cluster spots (10X Genomics).
The spots, with a diameter of 55 μm, the core spacing between adjacent
spots is about 100 μm. Primer sequences on each spot included
Read1 sequencing primer sequence, 16nt Spatial Barcode sequence,
12nt UMI sequence, and 30nt PolyT primer sequence. A single chip
can be used to detect four different tissue section samples at the
same time, but the permeability conditions of the samples need
to be optimized and determined respectively. The number of captured
cells corresponding to a single spot region is in the range of 1–10
(according to the sizes of cells), so it can be considered that the
detection level of spatial transcriptome is close to the single-cell level
(Fig. 1A).

Section fixation, staining and imaging. Sections were incubated at 37 °C
for 1 min, fixed with 4% formaldehyde (Sigma-Aldrich) in PBS for 10min,
and then washed with 1 × PBS for 3 times. For staining, the sections were
incubated in hematoxylin (Solarbio, CHN) for 4 min, bluing buffer (Solarbio,
CHN) for 30 s, and eosin (Solarbio, CHN) for 30 s. After each staining step,
sections were washed with 1 × PBS. After air drying, the slides were
scanned using a Zeiss platform (Carl Zeiss AG, Germany) at 20 ×
magnification of brightness field images.
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Fig. 1 Landscape of the PCNSL TME. A Workflow of patient sample screening, single-cell sequencing, spatial transcriptomics and combined
analysis. B Main cell types and tumor cell marker validation and T-cell subsets in TME of PCNSL patients.
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Tissue permeabilization. The slides were inserted into the slide box, and
the tissue sections were separated into separate reaction chambers. For
prepermeability, the sections were incubated at 37 °C with 0.5 U/mL
collagenase (ThermoFisher) and 0.2 mg/mL BSA (ThermoFisher) for 20min
in HBSS buffer (ThermoFisher). The wells were washed with 0.1 × SSC
(Sigma‒Aldrich), dissolved with 0.1% pepsin (Sigma‒Aldrich) in 0.1 m HCL
(Sigma‒Aldrich) and permeated at 37 °C for 10min. After incubation, the
pepsin solution was removed and washed with 0.1 × SSC.

Library preparation and quantification. After reverse transcription,
Qubit 3.0 was used for preliminary quantification, and the library was
diluted to 1 ng/ul. Then, Agilent 2100was used to detect the insert size of the
library. After the insert size met the expectation, Q-PCR was performed using
StepOnePlus Real-Time PCR System to accurately quantify the effective
concentration of the library (the effective concentration of the library was
required to be > 10 nM) and ensure the quality of the library. Qualified
libraries were sequenced using the Illumina platform.

Spatial transcriptomics raw data processing. Illumina platform sequencing
was used to obtain Raw off-machine sequences (Raw reads), and data
interception was performed to obtain sequences to be analyzed (Clean
reads). All subsequent analyses were based on Clean reads with GRCh38
V86 genome compilation as a reference and the corresponding GENCODE
annotation file (version 25). The count matrix was screened, only protein-
coding genes, long noncoding genes and antisense genes were retained,
and the Ensembl ID was replaced with HGNC symbols.

scRNA-seq Data processing. The specific parameters of quantification and
cell screening were referred to previously published literature [12, 14]. In
brief, the gene barcode count matrix was analyzed using the Seurat R
software package (version 4.0.2). Cells with > 200 genes and < 10%
mitochondrial gene profiles were screened from downstream analysis.
After the samples were converted to Seurat, the combined Seurat objects
were normalized and scaled by regression of UMI count and mitochondrial
gene percentage. In terms of dimension reduction, the FindVariableGenes
function was used to identify the most variable genes. PCA was then used
for dimensionality reduction, and the TSNE graph was generated by the
RunTSNE Seurat function (Seurat version 3.1.3).

Cell type annotation. After cell clustering, the FindAllMarkers function of
Seurat was used to generate DEGs (logFC > 0.25 and P < 0.05) for each
cluster in scRNA-seq data. We compared all DEGs of each cluster with the
CellMarker database to get the corresponding marker genes of each
cluster, and annotated the single cell data according to the obtained
specific marker genes. The cell annotation method for spatial omics
sequencing data was referred to the previously published literature [14]. By
calculating the DEGs for each cell type in single-cell data using
FindAllMarkers function, the top 30 DEGs of each cell type were used to
score each spot for spatial omics sequencing data after inspection and
clustering, and the cell type with the highest score for each cluster was
used for annotation.

Spatial transcriptomics data processing. Based on the gene expression
matrix in spots obtained from 10X Genomics Visium, PCA was used to
reduce the dimensionality of expression data, and then cluster analysis was
performed using PCA dimensionality reduction data. The SCTransform
function was used to normalize each locus, and the number of copies and
genes at each locus was regressed. The first 20 ICs were reduced and
clustered using independent component analysis (ICA) at a resolution
of 0.8.

Pathway analysis. The function FindMarker provided by Seurat was used
to identify DEGs (logFC > 0.25 and P < 0.05) in each cluster for spatial
transcriptomics data and scRNA-seq data. ClusterProfiler was used for GO
enrichment analysis of all DEGs in each cluster. As for spatial
transcriptomics data, after getting the top 10 pathways of each cluster,
we searched the upper-level pathway of each pathway one by one
through the GO official website (http://geneontology.org) and group the
pathways with the same uppermost pathway name together. GSVA was
carried out with the GSVA package.

Trajectory analysis. Monocle2 R package (version 2.20.0) were used for the
trajectory analysis. we selected the top 2000 significant DEGs among all
cell types as the ordering genes. Dimensionality reduction and trajectory

construction were performed on the selected genes with default methods
and parameters. Tumor cell subsets in the four TMEs were first used
separately for trajectory analysis, and then all tumor cells in the four TMEs
were extracted for co-trajectory analysis. BEAM analysis was used to get
the expression patterns in branches during development. Gene Switch
analysis was performed using GeneSwitches R package (version 0.1.0)
that can process trajectories to identify genes that act as switches
between cellular states [15]. Based our results from co-trajectory analysis,
GeneSwitches first binarizes each gene in each cell to facilitate the
identification of switching events while the pseudotime of each cell
providing the independent variable. The probability of gene-expression
throughout pseudotime was calculated and the quality of fit was estimated
using Pseudo R2. The activated switching genes with pseudotime (R2 > 0)
were defined as upregulation genes, otherwise down-regulated genes. The
higher the absolute value of R2, the closer the relationship between
switching genes and the trajectory process.

Cell chat analysis. Cell Chat Analysis was performed using CellChat R
package (version 1.5.0) [16]. Briefly, we followed the official workflow and
default parameter settings to load the four TME data separately into
CellChat after quality inspection and normalization. The built-in Cell-
ChatDB.human database was used as a reference for screening receptor-
ligand interactions. The potential ligand-receptor interactions between
infected and non-infected cells and potential pathways were calculated
using computeCommunProb, computeCommunProbPathway and aggre-
gateNet functions with standard parameters.

Tumor staging analysis. We used the Gene Expression Profiling Interactive
Analysis (GEPIA) database (http://gepia.cancer-pku.cn) and the TCGA data
contained therein to analyze the staging of the tumors [17]. The GEPIA
database is an online platform that uses a common processing technique
to examine RNA sequencing expression data from the TCGA and the
Genotype-Tissue Expression (GTEx) projects. GEPIA also has interactive
features including profiling based on pathological stages, and it has
incorporated statistical methods to process the data.

RESULTS
Landscape of the PCNSL TME
The complete TME status of the sample were took into account
when scoring each sample. For example, the complete TME of hot
tumor was that a large number of T cells were widely distributed
in both the interior of the tumor and the invasive margin. In cold
tumors, however, there are very few T cells, either inside or around
the invasive margin of the tumor. The complete TME of IMS is
that there are few T cells inside the tumor, but a few T cells are
distributed around the invasive margin. IME tumor also had very
few T cells inside, but a large accumulation of T cells around the
invasive margin (Supplementary Fig. S1A). Finally, 4 pathological
sections that could best reflect 4 representative TMEs were
selected from 46 patients with PCNSL for spatial transcriptome
analysis. In order to solve the problem of insufficient spatial
transcriptome resolution, we matched the single cell transcrip-
tome data of PCNSL to annotate the main cell types in the
spatial transcriptome and conduct integrative analysis. (Fig. 1A).
We processed the single cell sequencing data according to
the parameters mainly from the source literature [12], and some
parameters missing in the source literature from other literature
[14]. 14964 cells were observed from the TME after quality control
and screening. Then, we manually annotated the cell clusters into
5 different cell types with distinct gene expression patterns,
including T cells, macrophages, microglial cells, oligodendrocytes
and cancer cells. (Fig. 1B and Supplementary Fig. S1B). Three
representative markers, CD20, CD79A and CD79B, were used to
test the accuracy of the tumor cell population. Considering
the diversity and importance of T cells in the TME, T cells were
extracted and manually annotated into 7 clusters according to
the distinct gene expression patterns of each cluster, including
CD4+ naive, Treg, CD4+ exhausted, effect memory T-cell (TEM),
CD8+ naive, CD8+ toxic T-cell (TOX) and CD8+ exhausted cells
(Fig. 1B and Supplementary Fig. S1C).
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Spatial morphology and heterogeneity of the PCNSL TME
Based on the immune score, four typical immune microenviron-
ments were selected for spatial sequencing and formed different
clusters at the spatial level (Fig. 2A–D). A same method as the
previous report was performed to annotate these clusters [14]. By
calculating the gene expression profile of each cell type in PCSNL
single-cell data (Supplementary Table 1), we intercepted the top
30 genes of each cell type to score each spot in the spatial
transcriptome, and the cell type with the highest score for each
cluster was annotated. Through the score of T cells and tumor
cells, we confirmed that our selected slices indeed fit the
characteristics of hot immune microenvironment, which is found
with the most infiltrated immune cells (Fig. 2A and Supplementary
Fig. S2A, Fig. S2C). We verified the accuracy of our definition by
using the expression of specific markers and confirmed our
annotations (Supplementary Fig. 2B). In addition, considering
the heterogeneity of tumor cells in TME, different clustering
states and numbers of tumor cells were maintained, and tumor
cells were annotated into different clusters (Fig. 2A). In the
cold environment, only a few T cells infiltrated, and the tumor
cells still formed distinct clusters in space level (Fig. 2B and

Supplementary Fig. S2A, Fig. S2D, E). For the other two
intermediate states, the IMS tumor environment had only a
small number of T cells and macrophages gathered in the
boundary of the tumor area (Fig. 2C and Supplementary Fig. S2A,
Fig. S2F, G), at the same time, the tumor cells appeared to have
more obvious spatial heterogeneity, the outer and inner parts of
the tumor formed different clusters, which may indicate
different divisions of labor (Fig. 2C). The IME tumor environment
was defined as a state that had a large number of immune cells
in the invasive margin (Fig. 2D and Supplementary Fig. S2A,
Fig. S2H, I). The tumor heterogeneity and spatial distribution of
specificity were amplified in IME tumors. Tumor cells moved
from the inside out to form an “onion cascading structure”, and
each layer seemed to have a different status (Fig. 2D). All the
results indicated that the tumor cells were inhomogeneous, they
formed their special spatial distributions, and may have their
respective division of labor.

Definition and notation of PCNSL cell subpopulations
To further explore the specific function of each tumor cluster, we
performed the differentially expressed gene (DEG) analysis for
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Fig. 2 Spatial morphology and heterogeneity of the PCNSL TME. A Hematoxylin and eosin (H&E) staining of the “hot” TME region with the
corresponding unbiased clustering of ST spots and the spatial distribution of each cell subpopulation after annotation in the “hot” TME. Scale
bar, 1 mm. B Hematoxylin and eosin (H&E) staining of the “cold” TME region with the corresponding unbiased clustering of ST spots and the
spatial distribution of each cell subpopulation after annotation in the “cold” TME. Scale bar, 1 mm. C Hematoxylin and eosin (H&E) staining of
the “IMS” TME region with the corresponding unbiased clustering of ST spots and the spatial distribution of each cell subpopulation after
annotation in the “IMS” TME. Scale bar, 1 mm. D Hematoxylin and eosin (H&E) staining of the “IME” TME region with the corresponding
unbiased clustering of ST spots and the spatial distribution of each cell subpopulation after annotation in the “IME” TME. Scale bar, 1 mm. See
also Supplementary Fig. S1 and Fig. S2.
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each cell cluster using annotated spatial transcriptome data. Gene
Ontology (GO) enrichment analysis was performed for all DEGs of
each cancer cell cluster, and the top 10 GO terms were identified
to reflect the functions of each cluster of cancer cells (Supple-
mentary Table 2). We searched the upper-level pathways of each
term one by one through the GO official website, and used the
uppermost parent pathway to summarize the pathways and
defined each cluster of cancer cells according to a similar function,
which refers to their role in the microenvironment (Fig. 3A, B,
Supplementary Fig. S3A and Supplementary Table 3). To
determine whether the tumor was in a passive defensive or
aggressive state relative to the immune cells in the microenviron-
ment, we performed gene set variation analysis (GSVA) for
immune regulation pathways in each microenvironment. It was
found that most of the tumor cells in hot tumors were in a state of
passive defense (Supplementary Fig. 3B), while the tumor cells in
cold tumors basically lost the supervision of immune cells and
were in a state of negative immune regulation. For IMS tumors,
the two states coexisted. IME tumors were also in an immuno-
suppressive state. Therefore, we defined passive defense tumor
cells in hot tumors as “defenders”, mainly including cancer clusters
1 and 2. From the spatial position, they were mainly distributed in
the upper part of the section. Since tumor 3 had a very strong
sterol metabolism function to fight against immune cells, we
defined it as an “attacker”. Cancer clusters 4 and 6 were scattered
in the whole space and were responsible for auxiliary work, such
as cell movement and energy supply, so they were named
“engineers” and “energy suppliers” (Fig. 3C).

In cold tumors, there were no cancer cells in the immune
defense state, and most cancer cell clusters, such as clusters 1, 2, 6,
7, and 9, showed a strong negative immune regulation ability
(Fig. 3C). They also showed strong consistency in function,
mainly distributed in the upper part of the section. It is worth
noting that cold tumors had a cluster of highly proliferative cancer
cells (cluster 2), so these tumor cells were named “aggressors”.
In addition, auxiliary cancer clusters 3 and 4 existed in the
intersection zone of attackers and aggressors.
The state of cancer cells in IMS tumors had similarities with the

first two states but also had its own differences. Cancer cluster 2 in
the IMS tumors, in direct contact with T cells, showed both positive
and negative immune regulation states and seemed to be in the
transition stage of fighting T cells, while cancer clusters 1 and 3,
relatively close to the interior, showed strong proliferative
characteristics. It was noteworthy that a cluster of cells in IMS
tumors were different from the cancer populations in cold and hot
tumors. Since the main function of cancer cluster 4 in IMS tumors
was metabolic reprogramming of ncRNA, it was named “organizers”
(Fig. 3C). A same cluster was also found in the IME tumors, and it
seemed to inhabit a core of space position, which superimposed
over the internal areas of the tumor. With cancer cluster 4 as the
center extending outwards, cancer cluster 5 surrounding it had a
similar function to cancer cluster 4 and had a strong ATP
metabolism ability. In addition, there were proliferating cells
in cancer clusters 1 and 2, tumors 3 and 6 contained helper
cells (Fig. 3C). In addition, we also extracted tumor cells from the
scRNA-seq data of PCNSL patients, and calculated the DEGs of each
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cluster of cells after clustering. Then all the DEGs of each cluster
were successively analyzed by GO enrichment analysis to verify the
presence of each role of tumor subsets in our spatial transcriptome
data (Supplementary Fig. 3C). Our results further clarified the spatial
heterogeneity of tumors by completely annotating each cancer
cluster according to their different division of labor in spatial
dimensions.

TME remodeling pattern and immune pressure-sensing model
After functional annotation of PCNSL tumor subsets, we found
that some cancer clusters seemed to have a strong correlation and
similarity, although they were in different TMEs. Some potential
developmental correlations are emerging. So we explored the
developmental trajectories of tumor clusters for each TME in
detail. In hot tumors, defenders developed relatively early,
attackers gradually developed against immune cells, and the
auxiliary subgroups were involved in the whole development
process (Supplementary Fig. 4A). In cold tumors, the attackers
were found at an earlier stage, and with the help of the auxiliary
subgroup, the aggressors developed thereafter. Cold tumors
seemed to be a continuation of hot tumors, as if the cold
environment was a later stage in the development of the tumor
(Supplementary Fig. 4B). Compared with the other two transitional
states, IMS tumors and IME tumors, there was no clear definition of
their specific developmental stage in previous reports. Our studies
found that clusters of cancer cells in IMS tumors that were in direct
contact with T cells were in the earlier stage of the development
axis, and then aggressors and organizers were derived, which
developed in a spatial location far away from T cells (Supplemen-
tary Fig. 4C). IME tumors starts with organizers in IMS tumors and

derive aggressors outwards (Supplementary Fig. 4D). Considering
the crosslinks existed between some cancer clusters in different
TMEs, we extracted all tumor cells from the four TMEs for
combined analysis and obtained an overall view of the develop-
ment trajectory. The hot tumor, as the starting point of
development, had two different cell fates at the late stage, one
fates to the cold tumor and the other fates to the IME tumor, while
the IMS tumor was the transition state. We call this evolutionary
form of tumor cells the “TME remodeling pattern” (Fig. 4A). We
conducted Gene Switch analysis and obtained the key switch
genes for hot tumor to cold tumor development, and for IME
tumor development (Fig. 4B and Supplementary Fig. S5B, C). To
provide some hints for how to transform tumors from cold into
hot, which is what researchers are concerned about, branched
expression analysis modeling (BEAM) analysis was performed on
the key nodes of hot tumors developing in two directions, and the
top 50 key genes at the critical juncture of tumor developmental
transition were obtained (Supplementary Fig. S5A). In this way, we
were able to link different tumor cell subpopulations in the 4
microenvironments together and understand their interrelation-
ships and developmental axes (Fig. 4C). After experiencing the
challenge of immune cells, defenders derived attackers, and
attackers generated aggressors to expand the tumor when the
pressure of immune cells was low, while organizers were derived
to organize the tumor cells to construct the barrier environment in
the area with high pressure of immune cells, such as the IME
environment with a large distribution of blood vessels (Fig. 2D and
Supplementary Fig. 5D). We call this form of immune pressure on
the selective fate of tumor cells the “Immune pressure-sensing
model”. As seen from the role of the transformation process of
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tumor subsets, organizers were crucial to the generation of barrier
effects, so we conducted an in-depth study on the key marker of
organizers.

The FKBP5+ subpopulation promotes the formation of the
TME remodeling pattern
To identify the key marker of organizers and obtain clues for
breaking the barrier environment to guide the selection of PCNSL
treatment plan and the development of new drugs, we extracted
organizers from the related TME and conducted weighted gene
coexpression network analysis (WGCNA). According to the gene
expression characteristics, organizers were divided into the blue
and green modules (Supplementary Fig. S6A). According to the
most critical pathways of organizers, it can be found that the
green module mainly corresponds to mRNA processing ability,
while the blue module mainly corresponds to ncRNA metabolism
and RNA splicing ability (Supplementary Fig. S6B). We used
Cytoscape to extract the top 100 hub genes in each module
(Fig. 5A and Supplementary Table 4). These genes were combined
with the clinical information of diffuse large B lymphoma patients
for Lasso regression and Cox multivariate regression, and 10 genes
closely related to the survival of patients were finally screened out
(Fig. 5B, C and Supplementary Tables 5, 6). Considering that the
formation process of organizers is associated with the progression
of the tumor, we carried out further gene screening in patients

with tumor stage information using the Gene Expression Profiling
Interactive Analysis (GEPIA) database and the TCGA data
contained therein and found that only FKBP5 was closely related
to the patient’s tumor progression, which was also associated with
the progression of two other solid tumors (Fig. 5C). Firstly, based
on the reality of no sufficient standard PCNSL patient data,
associated tumor types which could be used to evaluate and
compare the staging of patients with PCNSL were selected. For
example, for DLBCL (Diffuse large B-cell lymphoma), 90% of
patients with PCNSL belong to DLBCL, and it was chosen as the
first option. For HNSC (Head and neck squamous cell carcinoma),
as the location of this cancer is similar to PCNSL, it was also
chosen. In addition, considering the similarity of central system
and peripheral tumor microenvironments at the time of tumor
occurrence, and the attempts to further consider the pan-tumor
reference value of our study, a common tumor type outside the
center system, LUAD (Lung adenocarcinoma), was selected.
All the data verified that our results have certain implications
for tumors both in and outside the central system, and
strengthened the persuasive power of our data. Therefore, we
believe that FKBP5 can indicate the staging of PCNSL to some
extent. Although more work is needed to validate the marker
of organizers, the current results suggest that targeting this
subgroup may inhibit the formation of a barrier environment,
thereby improving immunotherapy.
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Molecular mechanism of the TME remodeling pattern
Immune cells in the TME are also a population of interest, among
which the status of T cells is particularly important. By calculating
the gene expression profiles of each T-cell subset in the single-cell
data, and then scoring the spot of each T-cell in the spatial
transcriptome, the spatial representation of each type of T-cell
was obtained. In hot tumors, we found that CD8 TOX T cells
communicate most closely with other cells through “Cell Chat
Analysis” (Fig. 6A and Supplementary Fig. S7A). Among all
significant pathways in the whole communication network, the
CXCR4-CXCL12 signaling axis plays the most important role in hot
tumors (Fig. 6B and Supplementary Fig. S8A, B). It can be seen
from the analysis of incoming and outgoing signal patterns
that CD8 TOX T cells are the most important signal receivers
(Fig. 6C). The spatial expression patterns showed that CXCR4-
CXCL12 signaling axis was extensively activated in the hot TME
(Supplementary Fig. S7B). In cold tumors, the main part of the cell
communication network is the tumor cells of various subgroups
(Supplementary Fig. S7C). The most important signaling axis in
cold tumors was the CD99 signaling axis (Fig. 6B and Supplemen-
tary Fig. S9A, B), and the population receiving this signal was the
tumor cell subgroup with the strongest proliferative ability in the
late development of cold tumors (Fig. 6C). In terms of the spatial
expression pattern, the CD99 signaling axis was widely distributed
throughout the whole cold TME (Supplementary Fig. S7D).
Communication between each cell population of IMS tumors is
relatively intensive, and it is also a TME with the most kinds of
signaling pathways, which forms a strong echo with the transition
state of IMS tumors (Fig. 6A and Supplementary Fig. S7E). Among
the numerous pathways, the ITGAM+ ITGB2-ICAM1 signaling axis

had the most important significance (Fig. 6B and Supplementary
Fig. S10A, B). The final recipients of this signaling axis are both
immune cells and tumor cells, symbolizing the drastic change
process of tumor cells and immune cells in this state (Fig. 6C). At
the same time, the spatial distribution of the ITGAM+ ITGB2-ICAM1
signaling axis was also concentrated in the area of close contact
between tumor cells and T cells, which further reflects the intense
immune struggle in this area (Supplementary Fig. S7F). For IME
tumors, the center of the signal network was CD4 exhausted
T cells, and the intercellular interactions in the whole TME were
much weaker than those in other TMEs (Fig. 6A and Supplemen-
tary Fig. S7G). Of only four pathways, the ANXA1 - FPR1 signaling
axis was the most important, and building a barrier environment
and strengthening the signaling axes of tight connections took a
secondary position (Fig. 6B and Supplementary Fig. S11A, B). The
ANXA1-FPR1 signaling axis works on CD4- and CD8-exhausted
T cells, causing them to be in an anti-inflammatory state (Fig. 6C
and Supplementary Fig. S7H). In addition, the barrier environment
and the signaling axis that strengthen the tight connections
between cells make it difficult for immune cells to enter the tumor.
By observing the status of T cells in each TME, we noted that
exhausted T cells were the majority of T cells clustered at invasive
margins, suggesting that various molecules promoting exhaustion
of T cells may play a crucial role, which is very important for tumor
immunotherapy.

Immunotherapy innovation for the TME remodeling pattern
Immunotherapy targeting the TME has always been a key concern
in this research field, and our research ultimately aims
to provide new ideas and suggestions for tumor treatment.
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Among the current tumor immunotherapies, the use of immune
checkpoint molecular inhibitors and CAR-T therapy have been
proven to be the most effective [18–20]. First, we focused on to
the spatial expression of immune checkpoint molecules and their
corresponding ligands. It was found that the expression of
immune checkpoint molecules and their receptors, such as PD-1
and PD-L1, could show obvious temporal and spatial hetero-
geneity in different TMEs. In hot environments, the expression of
PD-L1 was distributed throughout the TME and showed a trend of
increased expression at the end of this developmental stage
(Fig. 7A and Supplementary Fig. S12B). In the IMS stage of intense
struggle between tumor cells and immune cells, PD-L1 expression
was concentrated at the invasive margin of tumor cells and
immune cells, where it fully binds to PD-1 and promotes the
exhaustion of T cells. However, the cells inside the tumor
expressed less PD-L1. In cold and IME environments, tumor cells
seemed to have become dominant and gradually decreased PD-L1

expression compared to the IMS environment. We had also
checked other immune checkpoint molecules and did not find any
temporal or spatial distribution characteristics similar to those of
PD-L1 (Supplemental Fig. S12A).
In the treatment of CAR-T therapy, the main target, CD19, also has

unique spatial expression differences. Hot tumors have relatively
weak expression of CD19 in tumor cells, but in cold and IMS tumors,
the expression of CD19 is significantly increased. In IME tumor, tumor
cells with high expression of CD19 are even encapsulated inside the
tumor, making it difficult for CAR-T cells to play a targeting role, which
is likely to be one of the reasons for the greatly reduced therapeutic
effect (Fig. 7B). Interestingly, the expression of CD19 showed a similar
pattern to that of organizers in both spatial location and expression
quantity, which showed that intervention with organizers might have
a positive effect on immunotherapy from another perspective
(Supplemental Fig. S12C). Our results showed that the expression
of molecules in immunotherapy may not simply be an order of
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magnitude change or a dynamic change over time, their expression is
likely to be accompanied by unique changes in spatial location. If we
can take advantage of the unique expression mode of such
molecules, it will be more conducive to improving the accuracy
and efficiency of immunotherapy. Thus, the TME remodeling pattern
of PCNSL and the corresponding key molecules and mechanisms
were revealed (Fig. 7C).

DISCUSSION
Here, we presented the overall landscape and various information
of the TME in a more complete manner through the combined use
of single-cell and spatial transcriptome technologies, which not
only ensures high resolution but also maintains the complete
statues of the TME and restores the spatial location information of
various PCNSL cells. Currently, studies on PCNSL are mainly
clinically related. There are few studies on the TME of PCNSL, one
of them described the cell types and compared lymphoma
outside the CNS with PCNSL [12]. However, the data did not
contain any spatial information. Another study focused on using
single-cell transcriptome technology to describe the heterogene-
ity of malignant B cells in PCNSL and the corresponding immune
cell state in detail, and used spatial transcriptome to show
the overall spatial distribution of malignant B cells in different
patients [21]. Our study combined four typical tumor microenvir-
onment characteristics to explore the spatial heterogeneity of
tumor cells in the PCNSL microenvironment, and further defined
them according to their spatial localization and function,
innovatively classifying tumor subpopulations through functional
analysis as defenders, attackers, aggressors, organizers, engineers
and energy suppliers.
Earlier studies have long assumed that the brain is an immune-

privileged region [22, 23]. After the concept of CNS immunity was
partially redefined, studies have demonstrated that blood-brain
barrier permeability increases after tumor occurrence, and the TME
in the brain has cell types similar to those outside the brain, except
for the cells in the brain [13]. This new concept indicates that
research on the TME of the CNS is also of reference value for other
TMEs. On the other hand, the degree of immune cell infiltration in
the TME is correlated with the immune situation in the region
before TME formation [5]. Organs or tissues that are more
susceptible to immune cell infiltration are more likely to push the
TME to a hot environment or conversely to a cold environment.
However, there are few immune cells in the brain before TME
formation, making the TME, like PCNSL, have a relatively clean
background before the occurrence of tumors. This kind of model
may have certain advantages in the study of the TME.
Through spatial pseudo time series analysis, we found that

tumor cells evolve through the TME remodeling pattern and filled
the gap in the field of unclear tumor staging in PCNSL. In previous
studies, the connections among the 4 kinds of TMEs were unclear,
and the TMEs were classified based on the degree of infiltrating
T cells [24–26]. Our study revealed the developmental sequence
and functional correlation of each tumor subgroup. In contrast to
previous studies [27, 28], we found that IMS is a transitional state
of tumor progression after the hot state, while IME, which was
previously considered to be a transitional state, is a terminal state
of tumor progression similar to the cold state, but it belongs to a
different cell fate. We also found that tumor cell fate selection is
likely based on T-cell load, which we call the immune pressure-
sensing model. When there are few T cells with immune killing
ability in the TME, the tumor often chooses to enter the cold state
and carry out strong proliferation and expansion. However, when
T cells are heavily loaded, such as in areas close to blood vessels,
where a large number of T cells may exist for backup, tumors
often choose to enter the IME state in such areas and form a tight
junction that isolates immune cells from the TME. Previous
studies tended to provide their own treatment plans for individual

TMEs [23, 29, 30], and the specific targets in each microenviron-
ment were mostly screened based on a single microenvironment
[31, 32]. However, they failed to take into full consideration that
different microenvironments may coexist and have time and
space continuity with each other. Our study is the first to integrate
four major microenvironments on the same level and timeline and
to take full account of the connections between different
microenvironments. On this basis, we screened out the key
molecules of tumor transition from the hot state to the two
terminal states and provided more meaningful reference targets.
Significant progress has been made in the treatment of PCNSL,

methotrexate-based multidrug chemotherapy is widely regarded as
the standard of pretreatment, but the optimal treatment regimen
for salvage treatment has not been determined [33, 34]. Several
new treatment strategies are being tested, such as ibrutinib
inhibitors, immunomodulatory drugs, PD-1 antibody and CAR-T
cells [35–37]. Unfortunately, the beneficial effects of these novel
drugs are often not long-lasting, and new treatment strategies that
are more precise and durable are being developed. Our study
provides some reasonable suggestions for current PCNSL therapy.
The first, and most noteworthy, is to break down the barriers that
tumor cells have built up. In the IME state, previous reports have
found that breaking the tight intercellular connections and barrier
environment can better inhibit tumor progression [38, 39]. Our
study not only re-emphasizes the importance of breaking down this
barrier environment but also identifies the mechanisms and key cell
subsets, such as the FKBP5+ tumor subgroup, that contribute to the
barrier effect. This will benefit future studies aiming to break down
tumor walls in a more comprehensive and precise way and provides
a possible method of tumor staging based on PCNSL pathological
data, which is extremely important for the judgment and treatment
of PCNSL patients.
CAR-T treatment of PCNSL may also face the problem of

removing the barrier. CD19-targeted CAR-T cells have been
successfully used to treat B-cell leukemia and lymphoma [40–42],
however, their potential in PCNSL has not been fully explored, partly
due to complications associated with treatment and partly due to
specific and complex expression patterns of target molecules in the
brain microenvironment [43]. Our study found that the expression
pattern of CD19 in PCNSL has unique characteristics, and CD19 is
wrapped layer by layer in the interior of the barrier environment of
IME, which also suggests that it is necessary to consider the removal
of the barrier environment in the design of CAR molecules. One of
the most important limitations in CAR-T treatment is the resistance
of the CAR structure, some studies of other cancers showed that
tumor cells decrease the expression of CD19 to escape the CAR-T
cells [44–46]. Our study shows that in PCNSL, CD19 seems to have
higher expression at the end of development than in the hot state
at the earlier stage, and tumor cells take advantage of the barrier
environment to avoid the attack of CAR-T cells. In the cold state, we
found that the tumor CD99 pathway plays a strong role, and it has
been shown to be a potential new target for the CAR-T therapy of
T-cell acute lymphoblastic leukemia [47]. Our results prove the
validity of CD99 in PCNSL, and it may serve as a potential target to
inhibit the proliferation and migration of tumor cells at this stage.
Regarding the use of immune checkpoint molecule inhibitors,

previous studies of PD-1 antibody therapy for PCNSL showed a
response [48–50]. In our analysis of tumor heterogeneity in the
TME, we found that tumor subgroups have their own spatial
functional zones, which may not be considered in previous tumor
treatments. Immune checkpoint molecule inhibitors have been
proven to be potential drugs for PCNSL treatment. However,
existing studies only focused on the expression levels of each
immune checkpoint molecule in PCNSL patients [49, 51, 52],
without paying attention to the dynamic change process over
time or their spatial distribution. Our study found that the
interaction of PD-L1 and PD-1 in the hot to IMS phases shifts the
peak, mainly in the area of close contact between T cells and
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tumor cells, and after this period, PD-L1 no longer has a major
impact, therefore, in the immunotherapy of PCNSL, the medica-
tion time of a part of immune checkpoint molecule inhibitors is
particularly important.
In conclusion, the uneven spatial distribution of tumor subsets

and the uneven spatial distribution of immunotherapy-related
target molecules may be responsible for poor therapeutic effects.
In the selection of inhibitors and immune checkpoint drugs, TMEs
in different states may have completely different responses to
drugs, and the therapeutic effects of CAR-T therapy may also be
different due to the spatial differences in TMEs. Our study details
the characteristics of various types of TMEs and provides specific
recommendations for drug selection and CAR molecular design. In
addition, the developmental stages of different TMEs are clearly
defined, and corresponding drugs and treatment methods can be
selected and adjusted according to the developmental stages of
tumors, which is of great significance in the precision treatment of
tumors. Beyond these findings, our results further clarified that the
spatial heterogeneity of tumors should be taken into considera-
tion in immunotherapy. We expect that the collection of these
data will provide valuable resources and meaningful references for
future TME research, the development of antitumor drugs and the
selection of treatment plans.
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