Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE LYMPHOBLASTIC LEUKEMIA

Targeting DNA polymerase β elicits synthetic lethality with mismatch repair deficiency in acute lymphoblastic leukemia

Abstract

Mismatch repair (MMR) deficiency has been linked to thiopurine resistance and hypermutation in relapsed acute lymphoblastic leukemia (ALL). However, the repair mechanism of thiopurine-induced DNA damage in the absence of MMR remains unclear. Here, we provide evidence that DNA polymerase β (POLB) of base excision repair (BER) pathway plays a critical role in the survival and thiopurine resistance of MMR-deficient ALL cells. In these aggressive resistant ALL cells, POLB depletion and its inhibitor oleanolic acid (OA) treatment result in synthetic lethality with MMR deficiency through increased cellular apurinic/apyrimidinic (AP) sites, DNA strand breaks and apoptosis. POLB depletion increases thiopurine sensitivities of resistant cells, and OA synergizes with thiopurine to kill these cells in ALL cell lines, patient-derived xenograft (PDX) cells and xenograft mouse models. Our findings suggest BER and POLB’s roles in the process of repairing thiopurine-induced DNA damage in MMR-deficient ALL cells, and implicate their potentials as therapeutic targets against aggressive ALL progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MMR deficiency causes hypermutation and thiopurine resistance during ALL relapse.
Fig. 2: BER key factor POLB is a potential target for overcoming thiopurine resistance in MMR-deficient ALL cells.
Fig. 3: OA-induced POLB inhibition elicits synthetic lethality with MMR deficiency in ALL cells.
Fig. 4: OA and 6-TG synergize to inhibit the proliferation of MMR-deficient primary ALL cells.
Fig. 5: OA and 6-TG synergize to kill MMR-deficient ALL cells in xenograft mouse models.
Fig. 6: Schematic representation of OA-induced POLB inhibition effect in MMR-deficient ALL.

Similar content being viewed by others

Data availability

In this study, there were no new datasets generated but re-analysis of existing datasets included in previously published papers as described in Materials and methods. For further information, please contact the corresponding author.

References

  1. Pui CH, Yang JJ, Bhakta N, Rodriguez-Galindo C. Global efforts toward the cure of childhood acute lymphoblastic leukaemia. Lancet Child Adolesc Health. 2018;2:440–54. https://doi.org/10.1016/S2352-4642(18)30066-X

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ribeiro RC, Antillon F, Pedrosa F, Pui CH. Global pediatric oncology: lessons from partnerships between high-income countries and low- to mid-income countries. J Clin Oncol. 2016;34:53–61. https://doi.org/10.1200/JCO.2015.61.9148

    Article  CAS  PubMed  Google Scholar 

  3. Bhojwani D, Pui CH. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14:e205–217. https://doi.org/10.1016/S1470-2045(12)70580-6

    Article  PubMed  Google Scholar 

  4. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354:166–78. https://doi.org/10.1056/NEJMra052603

    Article  CAS  PubMed  Google Scholar 

  5. Li B, Brady SW, Ma X, Shen S, Zhang Y, Li Y, et al. Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood. 2020;135:41–55. https://doi.org/10.1182/blood.2019002220

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li B, Li H, Bai Y, Kirschner-Schwabe R, Yang JJ, Chen Y, et al. Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat Med. 2015;21:563–71. https://doi.org/10.1038/nm.3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dieck CL, Ferrando A. Genetics and mechanisms of NT5C2-driven chemotherapy resistance in relapsed ALL. Blood. 2019;133:2263–8. https://doi.org/10.1182/blood-2019-01-852392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Swann PF, Waters TR, Moulton DC, Xu YZ, Zheng Q, Edwards M, et al. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science. 1996;273:1109–11. https://doi.org/10.1126/science.273.5278.1109

    Article  CAS  PubMed  Google Scholar 

  9. Fink D, Aebi S, Howell SB. The role of DNA mismatch repair in drug resistance. Clin Cancer Res. 1998;4:1–6.

    CAS  PubMed  Google Scholar 

  10. Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer. 2008;8:24–36. https://doi.org/10.1038/nrc2292

    Article  CAS  PubMed  Google Scholar 

  11. Yang F, Brady SW, Tang C, Sun H, Du L, Barz MJ, et al. Chemotherapy and mismatch repair deficiency cooperate to fuel TP53 mutagenesis and ALL relapse. Nat Cancer. 2021;2:819–34. https://doi.org/10.1038/s43018-021-00230-8

    Article  CAS  PubMed  Google Scholar 

  12. Koren G, Ferrazini G, Sulh H, Langevin AM, Kapelushnik J, Klein J, et al. Systemic exposure to mercaptopurine as a prognostic factor in acute lymphocytic leukemia in children. N Engl J Med. 1990;323:17–21. https://doi.org/10.1056/NEJM199007053230104

    Article  CAS  PubMed  Google Scholar 

  13. Relling MV, Hancock ML, Boyett JM, Pui CH, Evans WE. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood. 1999;93:2817–23.

    Article  CAS  PubMed  Google Scholar 

  14. Yuan B, O’Connor TR, Wang Y. 6-Thioguanine and S(6)-methylthioguanine are mutagenic in human cells. ACS Chem Biol. 2010;5:1021–7. https://doi.org/10.1021/cb100214b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uribe-Luna S, Quintana-Hau JD, Maldonado-Rodriguez R, Espinosa-Lara M, Beattie KL, Farquhar D, et al. Mutagenic consequences of the incorporation of 6-thioguanine into DNA. Biochem Pharmacol. 1997;54:419–24. https://doi.org/10.1016/s0006-2952(97)00200-1

    Article  CAS  PubMed  Google Scholar 

  16. Diouf B, Cheng Q, Krynetskaia NF, Yang W, Cheok M, Pei D, et al. Somatic deletions of genes regulating MSH2 protein stability cause DNA mismatch repair deficiency and drug resistance in human leukemia cells. Nat Med. 2011;17:1298–303. https://doi.org/10.1038/nm.2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sancar A. DNA excision repair. Annu Rev Biochem. 1996;65:43–81. https://doi.org/10.1146/annurev.bi.65.070196.000355

    Article  CAS  PubMed  Google Scholar 

  18. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58:235–63. https://doi.org/10.1002/em.22087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sobol RW, Horton JK, Kuhn R, Gu H, Singhal RK, Prasad R, et al. Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature. 1996;379:183–6. https://doi.org/10.1038/379183a0

    Article  CAS  PubMed  Google Scholar 

  20. Prasad R, Shock DD, Beard WA, Wilson SH. Substrate channeling in mammalian base excision repair pathways: passing the baton. J Biol Chem. 2010;285:40479–88. https://doi.org/10.1074/jbc.M110.155267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Prasad R, Beard WA, Strauss PR, Wilson SH. Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. J Biol Chem. 1998;273:15263–70. https://doi.org/10.1074/jbc.273.24.15263

    Article  CAS  PubMed  Google Scholar 

  22. Wallace SS, Murphy DL, Sweasy JB. Base excision repair and cancer. Cancer Lett. 2012;327:73–89. https://doi.org/10.1016/j.canlet.2011.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McLeod C, Gout AM, Zhou X, Thrasher A, Rahbarinia D, Brady SW, et al. St. Jude Cloud: A pediatric cancer genomic data-sharing ecosystem. Cancer Discov. 2021;11:1082–99. https://doi.org/10.1158/2159-8290.CD-20-1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen YL, Tang C, Zhang MY, Huang WL, Xu Y, Sun HY, et al. Blocking ATM-dependent NF-kappaB pathway overcomes niche protection and improves chemotherapy response in acute lymphoblastic. Leukemia. 2019;33:2365–78. https://doi.org/10.1038/s41375-019-0458-0

    Article  CAS  PubMed  Google Scholar 

  25. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duan CW, Shi J, Chen J, Wang B, Yu YH, Qin X, et al. Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell. 2014;25:778–93. https://doi.org/10.1016/j.ccr.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  27. Gu L, Cline-Brown B, Zhang F, Qiu L, Li GM. Mismatch repair deficiency in hematological malignancies with microsatellite instability. Oncogene. 2002;21:5758–64. https://doi.org/10.1038/sj.onc.1205695

    Article  CAS  PubMed  Google Scholar 

  28. Colussi C, Parlanti E, Degan P, Aquilina G, Barnes D, Macpherson P, et al. The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool. Curr Biol. 2002;12:912–8. https://doi.org/10.1016/s0960-9822(02)00863-1

    Article  CAS  PubMed  Google Scholar 

  29. Macpherson P, Barone F, Maga G, Mazzei F, Karran P, Bignami M. 8-oxoguanine incorporation into DNA repeats in vitro and mismatch recognition by MutSalpha. Nucleic Acids Res. 2005;33:5094–105. https://doi.org/10.1093/nar/gki813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Waters TR, Swann PF. Cytotoxic mechanism of 6-thioguanine: hMutSalpha, the human mismatch binding heterodimer, binds to DNA containing S6-methylthioguanine. Biochemistry. 1997;36:2501–6. https://doi.org/10.1021/bi9621573

    Article  CAS  PubMed  Google Scholar 

  31. Svilar D, Goellner EM, Almeida KH, Sobol RW. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal. 2011;14:2491–507. https://doi.org/10.1089/ars.2010.3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Madhusudan S, Smart F, Shrimpton P, Parsons JL, Gardiner L, Houlbrook S, et al. Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res. 2005;33:4711–24. https://doi.org/10.1093/nar/gki781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seo Y, Kinsella TJ. Essential role of DNA base excision repair on survival in an acidic tumor microenvironment. Cancer Res. 2009;69:7285–93. https://doi.org/10.1158/0008-5472.CAN-09-0624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin SA, McCabe N, Mullarkey M, Cummins R, Burgess DJ, Nakabeppu Y, et al. DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. Cancer Cell. 2010;17:235–48. https://doi.org/10.1016/j.ccr.2009.12.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jain R, Aggarwal AK, Rechkoblit O. Eukaryotic DNA polymerases. Curr Opin Struct Biol. 2018;53:77–87. https://doi.org/10.1016/j.sbi.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  36. Yang W, Gao Y. Translesion and repair DNA Polymerases: Diverse structure and mechanism. Annu Rev Biochem. 2018;87:239–61. https://doi.org/10.1146/annurev-biochem-062917-012405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408:433–9. https://doi.org/10.1038/35044005

    Article  CAS  PubMed  Google Scholar 

  38. Gao Z, Maloney DJ, Dedkova LM, Hecht SM. Inhibitors of DNA polymerase beta: activity and mechanism. Bioorg Med Chem. 2008;16:4331–40. https://doi.org/10.1016/j.bmc.2008.02.071

    Article  CAS  PubMed  Google Scholar 

  39. Barakat KH, Gajewski MM, Tuszynski JA. DNA polymerase beta (pol beta) inhibitors: a comprehensive overview. Drug Discov Today. 2012;17:913–20. https://doi.org/10.1016/j.drudis.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  40. Sasaki R, Suzuki Y, Yonezawa Y, Ota Y, Okamoto Y, Demizu Y, et al. DNA polymerase gamma inhibition by vitamin K3 induces mitochondria-mediated cytotoxicity in human cancer cells. Cancer Sci. 2008;99:1040–8. https://doi.org/10.1111/j.1349-7006.2008.00771.x

    Article  CAS  PubMed  Google Scholar 

  41. Bailly V, Verly WG. Possible roles of beta-elimination and delta-elimination reactions in the repair of DNA containing AP (apurinic/apyrimidinic) sites in mammalian cells. Biochem J. 1988;253:553–9. https://doi.org/10.1042/bj2530553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan K, Resnick MA, Gordenin DA. The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis. DNA Repair. 2013;12:878–89. https://doi.org/10.1016/j.dnarep.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  43. Kaina B, Ziouta A, Ochs K, Coquerelle T. Chromosomal instability, reproductive cell death and apoptosis induced by O6-methylguanine in Mex-, Mex+ and methylation-tolerant mismatch repair compromised cells: facts and models. Mutat Res. 1997;381:227–41. https://doi.org/10.1016/s0027-5107(97)00187-5

    Article  CAS  PubMed  Google Scholar 

  44. Vernole P, Pepponi R, D’Atri S. Role of mismatch repair in the induction of chromosomal aberrations and sister chromatid exchanges in cells treated with different chemotherapeutic agents. Cancer Chemother Pharmacol. 2003;52:185–92. https://doi.org/10.1007/s00280-003-0660-6

    Article  CAS  PubMed  Google Scholar 

  45. Evensen NA, Madhusoodhan PP, Meyer J, Saliba J, Chowdhury A, Araten DJ, et al. MSH6 haploinsufficiency at relapse contributes to the development of thiopurine resistance in pediatric B-lymphoblastic leukemia. Haematologica. 2018;103:830–9. https://doi.org/10.3324/haematol.2017.176362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dianov GL, Prasad R, Wilson SH, Bohr VA. Role of DNA polymerase beta in the excision step of long patch mammalian base excision repair. J Biol Chem. 1999;274:13741–3. https://doi.org/10.1074/jbc.274.20.13741

    Article  CAS  PubMed  Google Scholar 

  47. Nicolay NH, Helleday T, Sharma RA. Biological relevance of DNA polymerase beta and translesion synthesis polymerases to cancer and its treatment. Curr Mol Pharmacol. 2012;5:54–67.

    Article  CAS  PubMed  Google Scholar 

  48. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21. https://doi.org/10.1038/nature03445

    Article  CAS  PubMed  Google Scholar 

  49. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34. https://doi.org/10.1056/NEJMoa0900212

    Article  CAS  PubMed  Google Scholar 

  50. Liu J. Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol. 1995;49:57–68. https://doi.org/10.1016/0378-8741(95)90032-2

    Article  CAS  PubMed  Google Scholar 

  51. Shanmugam MK, Dai X, Kumar AP, Tan BK, Sethi G, Bishayee A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. Cancer Lett. 2014;346:206–16. https://doi.org/10.1016/j.canlet.2014.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pollier J, Goossens A. Oleanolic acid. Phytochemistry. 2012;77:10–15. https://doi.org/10.1016/j.phytochem.2011.12.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yu Liu (Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University) for helpful suggestions in clinical data re-analysis; Yan Xu, Yao Chen, Chun-Shuang Ma and Ming-Zhen Tian (Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University) for technical supports and helps. This work was sponsored by grants from National Key R&D Program of China (No. 2021YFA1100800 to B-BSZ), National Natural Science Foundation of China (No. 81970141 to B-BSZ; No. 82100179 to D-PY; No. 82000110 to CT; and No. 82070158 & No. 81870082 to C-WD), Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics (No. 20DZ2260900 to B-BSZ), and Shanghai Sailing Program (No. 21YF1428100 to D-PY).

Author information

Authors and Affiliations

Authors

Contributions

J-YT, D-PY, CT and H-SF were major contributors to experiments and data analysis. J-YT, D-PY, CT, C-WD and B-BSZ were responsible for interpreting experimental data and writing the paper. H-YS, JL and JY contributed to related bioinformatics analysis. Y-NX, X-ML, FY, R-XX and FF provided reagents and contributed to several in vitro experiments. H-SF and C-WD made major contributions to in vivo experiments. F-LM, J-CH and HL gave helpful suggestions for paper writing. B-SL supplied clinical data of ALL patient samples.

Corresponding authors

Correspondence to Ding-Peng Yang, Cai-Wen Duan or Bin-Bing S. Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, JY., Yang, DP., Tang, C. et al. Targeting DNA polymerase β elicits synthetic lethality with mismatch repair deficiency in acute lymphoblastic leukemia. Leukemia 37, 1204–1215 (2023). https://doi.org/10.1038/s41375-023-01902-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-01902-3

This article is cited by

Search

Quick links