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Neddylation is a sequential enzyme-based process which regulates the function of E3 Cullin-RING ligase (CRL) and thus degradation
of substrate proteins. Here we show that CD8+ T cells are a direct target for therapeutically relevant anti-lymphoma activity of
pevonedistat, a Nedd8-activating enzyme (NAE) inhibitor. Pevonedistat-treated patient-derived CD8+ T cells upregulated TNFα and
IFNγ and exhibited enhanced cytotoxicity. Pevonedistat induced CD8+ T-cell inflamed microenvironment and delayed tumor
progression in A20 syngeneic lymphoma model. This anti-tumor effect lessened when CD8+ T cells lost the ability to engage
tumors through MHC class I interactions, achieved either through CD8+ T-cell depletion or genetic knockout of B2M. Meanwhile,
loss of UBE2M in tumor did not alter efficacy of pevonedistat. Concurrent blockade of NAE and PD-1 led to enhanced tumor
immune infiltration, T-cell activation and chemokine expression and synergistically restricted tumor growth. shRNA-mediated
knockdown of HIF-1α, a CRL substrate, abrogated the in vitro effects of pevonedistat, suggesting that NAE inhibition modulates
T-cell function in HIF-1α-dependent manner. scRNA-Seq-based clinical analyses in lymphoma patients receiving pevonedistat
therapy demonstrated upregulation of interferon response signatures in immune cells. Thus, targeting NAE enhances the
inflammatory T-cell state, providing rationale for checkpoint blockade-based combination therapy.

Leukemia (2023) 37:1324–1335; https://doi.org/10.1038/s41375-023-01889-x

INTRODUCTION
Immunotherapy revolutionized cancer care: immune checkpoint
inhibitors received FDA approvals for treatment of multiple tumor
types, and cell-based therapies (i.e., chimeric antigen receptor
T cells) transformed standard of care of patients with non-Hodgkin
lymphoma (NHL) and acute lymphoblastic leukemia. More
recently, bi-specific T-cell engagers have shown impressive clinical
activity in hematologic malignancies [1]. While such strategies are
highly effective, they remain non-curative and novel approaches
to enhance their clinical impact are necessary.
Contrary to chemotherapy, novel targeted therapies are asso-

ciated with diverse immunomodulatory effects [2, 3]. For example,
inhibitors of B-cell receptor-associated kinases, now widely used in
therapy of NHL, may enhance T-cell function through multiple
mechanisms, including reversal of exhaustion, altered T-cell polar-
ization, and neutralization of the immunosuppressive effect by the
neoplastic cells [3, 4]. Importantly, the clinical efficacy of compounds
which target protein degradation, such as the E3 ubiquitin ligase
modulator lenalidomide, in large part depends on their immuno-
modulatory effects [5, 6]. Thus, investigation of pathways within the

ubiquitin-proteasome system (UPS) which may be engaged to
enhance anti-tumor immunity is of critical importance.
Cullin-RING E3 ubiquitin ligases (CRLs) conjugate ubiquitin chains

to unwanted or misfolded proteins in cells, eventually leading to
proteasome-mediated degradation [7]. To undergo the conforma-
tional change and enable substrate ubiquitination, the CRLs require
conjugation of the active ubiquitin-like protein NEDD8 to the
scaffold Cullin proteins, a process referred to as neddylation [8]. Like
ubiquitination, neddylation is a three-step sequential enzymatic
reaction which starts with NEDD8 activation by the E1 NEDD8-
activating enzyme (NAE, NAE1/UBA3 heterodimer), followed by
NEDD8 transfer to the E2 NEDD8-conjugating enzymes (UBC12 and
UBE2F) and finally NEDD8 addition to the Cullin proteins [9].
Pevonedistat (MLN4924, TAK924) is a small molecule that

covalently adducts with NEDD8, rendering it inactive and
eventually leading to CRL deactivation and accumulation of CRL-
dependent substrates [10]. Targeting neddylation with pevonedi-
stat demonstrated preclinical and early clinical efficacy across a
spectrum of hematologic malignancies and solid tumor types,
alone and in combination with chemotherapeutic, hormonal and
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targeted agents [10–20]. On the other hand, neddylation has been
implicated in regulation of immune cell function [21–23]. Our
group first demonstrated that pharmacologic targeting NAE
rehabilitated T cells derived from patients with chronic lympho-
cytic leukemia (CLL), leading to decreased Treg differentiation and
enhanced TH1 polarization, accompanied by increased production
of interferon-γ (IFN-γ), and confirmed these findings in immunized
mice [21]. However, whether altering neddylation may ultimately
enhance anti-tumor immunity, and contribute to the direct anti-
tumor effects of pevonedistat in lymphoma and other cancers,
remains unknown. In the current work, we employed the
A20 syngeneic lymphoma mouse model and primary samples
from patients treated with pevonedistat to demonstrate that
targeting neddylation directly enhances anti-tumor response by
promoting T-cell activation.

METHODS
Patient samples
Following approval by the Institutional Review Board and provision of
written informed consent, peripheral blood was obtained from CLL
patients treated at City of Hope National Medical Center (Duarte, CA).
Peripheral blood samples were obtained from eight patients with NHL and
CLL who received pevonedistat on a Phase I clinical trial (at baseline, 3 and
24 h after pevonedistat infusion; Supplementary Table S1; NCT03479268)
[24]. Peripheral blood mononuclear cells (PBMCs) were isolated using
standard Ficoll-Hypaque technique (Amersham). Red blood cells were
lysed using ACK buffer (Thermo Fisher Scientific).

Cell culture
A20, JeKo-1, Mino, Val, Maver-1 and Lewis lung carcinoma (LLC) cells were
obtained from American Type Culture Collection (ATCC, USA). Mycoplasma
testing was performed regularly (every 2 months) using Mycoplasma PCR
detection kit (ABM, Canada). The number of passages between thawing
and use in the described experiments ranged between two and five. Cells
were cultured in RPMI-1640 medium supplemented with 15% fetal bovine
serum, 100 U/mL penicillin, 100 μg/mL streptomycin, 2 mM L-glutamine,
25mM HEPES, 100 μM nonessential amino acids, and 1mM sodium
pyruvate (Lonza).
Total CD3+ T cells were isolated from PBMCs derived from CLL patients

by positive selection kit (Invitrogen, USA) and cultured with 0.5 μg/mL
plate-bound anti-CD3 (clone UCHT1) and 0.5 μg/mL soluble anti-CD28
(clone CD28.2; BD Biosciences).
Pevonedistat (TAK924) was provided by Takeda Development Center

Americas, Inc.

Cell viability testing
To measure cell proliferation, cells were plated in 96-wellplates (5000 cells/well,
3 wells/sample) with drugs and incubated for 48 h at 37 °C in 5% CO2. After
incubation, relative numbers of viable cells weremeasured using a tetrazolium-
based colorimetric assay (CellTiter Aqueous One Solution Cell Proliferation
Assay, Promega).
For cytotoxicity assay, stimulated T cells were harvested and washed

three times with PBS. Lymphoma cells were labeled with CFSE and co-
cultured with T cells in 1:1 or 5:1 ratio for additional 48 h. Apoptosis was
measured using the ApoScreen Annexin V Apoptosis Kit (Southern
Biotech). Briefly, cells were resuspended in 100 µL Annexin V binding
buffer containing 0.5 µL Annexin V mAb and 0.5 µL 7-aminoactinomycin D
(7-AAD). Cells were then subjected to flow cytometry and double-positive
(Annexin V/&-AAD) population was analyzed.

Immunoblotting
Cells were lysed in RIPA buffer (20 mM Tris, 150 mM NaCl, 1 % NP-40, 1 mM
NaF, 1 mM sodium phosphate, 1 mM NaVO3, 1 mM EDTA, 1 mM EGTA),
supplemented with protease inhibitor cocktail (Roche), phosphatase
inhibitor cocktail 2 (Sigma-Aldrich) and 1mM phenylmethanesulfonyl
fluoride. Primary antibodies used in Western blot analysis were listed in
Supplementary Table S2. Secondary horseradish peroxidase-conjugated
anti-mouse and anti-rabbit were purchased from Cell Signaling Technol-
ogy. Protein bands were developed by ECL Western blotting detection
reagents (GE Healthcare) according to kit instructions.

In vivo experiments
Six-to-eight-week-old mice were purchased from The Jackson Laboratory
(United States). Mice were injected subcutaneously at both flanks with
1 × 106 A20 lymphoma cells (WT BALB/c) or LLC cells (WT C57BL/6 (B6)).
When tumors reached 100 mm3, tumor-bearing recipient mice were
randomized into groups and treated as indicated. All mice were
maintained under specific pathogen-free conditions in the vivarium facility
of City of Hope. Animal work was approved by the Institutional Animal
Care and Use Committee of City of Hope. The following drugs were used:
InVivoMAb anti-mouse CD8α (clone 53-6.7), InVivoPlus anti-mouse PD-1
(clone RMP1-14; both from BioXCell).

Tumor dissociation and flow cytometry
Tumors were harvested from tumor-bearing mice. Tumor weight was
measured before dissociation and tumors were processed into single-cell
suspension. Antibodies used for flow cytometry were listed in Supple-
mentary Table S2. For tumors and human PBMC cells, dead cells were
excluded by Live/Dead fixable aqua dead cell stain kit (Invitrogen). BD Fix/
Permeabilization buffer was used for intracellular staining of IFN-γ, TNF-α,
IL-2, IL-4 and IL-17 in tumor-infiltrating lymphocytes (TILs).
For cytokine staining, equal numbers of tumor (or human PBMC cells)

were cultured in vitro for 5 h in the presence of 50 ng/mL phorbol 12-
myristate 13-acetate (PMA) (Sigma Aldrich), 1 μg/mL ionomycin (Sigma
Aldrich) and 5 μg/mL BFA (Biolegend). For FoxP3 staining, True-nuclear
Transcription Factor Buffer Set was used (Biolegned). Data were acquired
on BD Fortessa and analyzed with FlowJo software V10 (Oregon, USA).

Statistical analysis
At least 3 biological replicates were used in all experiments shown
throughout the manuscript, unless noted otherwise. Statistical analysis was
performed with Student t test or one-way ANOVA with Tukey’s multiple
comparisons test, when indicated, in GraphPad Prism software. *p < 0.05,
**p < 0.01 and ***p < 0.001 throughout the manuscript. Research reported
in this publication included work performed in the Hematopoietic Tissue
Biorepository, the Integrative Genomics and Bioinformatics Core and the
Analytical Cytometry Cores and supported by the National Cancer Institute
of the National Institutes of Health under award number P30CA033572.

RESULTS
Pharmacologic targeting NAE enhances T-cell cytotoxicity
in vitro
We have previously shown that NAE inhibition-induced IFN-γ and
downmodulated IL-2 expression in primary CD4+ T cells [21]. To
investigate whether interference with the neddylation pathway
altered the functionality of cytotoxic lymphocytes, primary T cells
isolated from peripheral blood of CLL patients were subjected to
TCR engagement followed by treatment with pevonedistat. We
observed that NAE inhibition led to increased secretion of the
effector molecules TNF-α and IFN-γ in human CD8+ T cells (Fig. 1A;
Supplementary Fig. 1A). By contrast, TNF-α expression and IFN-γ
by CD4+ T cells was unchanged. Microarray analysis of sorted
naïve CD3+ T cells has previously demonstrated mRNA transcript
upregulation of the exhaustion markers following pevonedistat
treatment [21]. Here we observed that CTLA-4 expression was
induced by pevonedistat in both CD8+ and CD4+ T cells, while
only CD8+ T cells exhibited upregulation of PD-1 (Fig. 1B). Next,
we evaluated the effect of pevonedistat on T-cell mediated
cytotoxicity. While unstimulated patient-derived T cells failed to
exhibit cytotoxicity, CD3/28 stimulation led to a significant killing
of target lymphoma cells (Fig. 1C; Supplementary Fig. 1B). Pre-
treatment with pevonedistat enhanced allogeneic T-cell-mediated
killing of neoplastic B cells, suggesting that NAE inhibition may
enhance cytotoxic cell function.

NAE inhibition activates tumor-infiltrating lymphocytes (TILs)
We had shown that NAE inhibition results in increased IFN-γ
secretion and a reduction in Treg population in ova immunization
model, suggesting that NAE inhibition may modulate anti-tumor
response in vivo [21]. To further explore the immunomodulatory
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effect of NAE inhibition in an immunocompetent model, A20
lymphoma cells were transplanted into syngeneic BALB/c mice.
Tumors emerged approximately one week after inoculation. When
tumor size reached ~100 mm3, mice were randomized into two
groups and treated with either pevonedistat or vehicle control for
10 days (Fig. 2A). In this model, treatment with pevonedistat
restricted tumor growth (Fig. 2B). Analysis of murine tumors at the
end of treatment revealed that the absolute quantities of CD4+

and CD8+ TILs were significantly increased by pevonedistat
(Fig. 2C; Supplementary Fig. 2). Furthermore, we observed an
increased number of IFN-γ-producing CD8+ cells in tumors
harvested from pevonedistat-treated mice compared with control
animals (Fig. 2D). Meanwhile, treatment with pevonedistat had no
effect on cytokine secretion by CD4+ cells (Fig. 2E). Expression of
PD-1 was also unchanged in both T-cell subsets (Fig. 2D, E).
Additionally, we did not observe a change in the infiltrating Treg
cells (Fig. 2F).
To explore whether immunomodulation via NAE inhibition was

restricted to the highly immunogenic A20 lymphoma model, we
conducted experiments in Lewis lung carcinoma (LLC) which is
considered a relatively immunologically cold tumor. Still, treat-
ment with pevonedistat restricted growth of LLC tumors
(Supplementary Fig. 3A). Interestingly, here we also observed a
dramatic increase in both CD4+ and CD8+ TILs, albeit the absolute
lymphocyte numbers were significantly lower than in the A20
model (Supplementary Fig. 3B). Furthermore, unlike in A20 model,

LLC TILs exhibited an increased expression of immune checkpoint
molecules upon NAE inhibition (Supplementary Fig. 3C).
Thus, NAE inhibition modulated TILs in syngeneic mouse models.

CD8+ T cells are indispensable for the therapeutic effect of
pevonedistat
We and others have shown that pevonedistat exerts direct anti-
tumor effects across multiple tumor types [14, 16, 25–27]. Still, our
findings strongly suggest that immune modulation significantly
contributes to the therapeutic effect of pevonedistat. To further
explore this, we first evaluated susceptibility of A20 cells to NAE
inhibition in vitro. While pevonedistat is cytotoxic to multiple NHL
cell lines, A20 cells were resistant to NAE inhibition (Fig. 3A, B)
[26, 27]. To investigate the relative importance of TILs in
pevonedistat-mediated anti-tumor effect, we used antibody-
mediated depletion of CD8+ T cells in mice. Interestingly, loss of
CD8+ T cells resulted in accelerated tumor growth, further
implicating the immune environment in this mouse model
(Fig. 3C). The therapeutic effect of NAE inhibition was also
completely abrogated in lymphoma-bearing mice treated with
anti-CD8 antibody. Consistent with our earlier data, the absolute
numbers of both CD8+ TILs and IFN-γ-producing CD8+ cells were
significantly increased by pevonedistat treatment, while expres-
sion of PD-1 remained unchanged (Fig. 3D; Supplemental Fig. 4A).
As expected, CD8+ TILs were not detected in mice treated with
anti-CD8 antibody, while the phenotypic and compositional
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profiles of the CD4+ T cells were unaffected (Fig. 3D, E;
Supplementary Fig. 4B).
Since cytotoxic T cells require MHC class I molecules for antigen

presentation, we explored whether their loss impacts pevonedi-
stat efficacy. We had previously employed the CRISPR/Cas9
technique to generate knockout of β2-microglobulin (B2M-KO)
[28]. The B2M knockout completely abolished the expression of
MHC class I in A20 cells (Fig. 3F). While B2M loss did not negatively
impact tumor growth either in vitro or in vivo, the anti-tumor
effect of pevonedistat was fully abrogated (Fig. 3G). B2M-KO
tumors did not attract TILs whose profiles from pevonedistat-
treated mice were comparable with control animals (Fig. 3H;
Supplementary Fig. 3C, D).
To further investigate the exact contribution of NAE inhibition in

the tumor, we employed shRNA-mediated knockdown of UBE2M in
A20 cells. UBC12, encoded by UBE2M, is NEDD8-conjugating enzyme
which governs neddylation [23]. shUBE2M A20 cells were trans-
planted into flanks of syngeneic BALB/c mice followed by pevonedi-
stat treatment. We confirmed durability of UBC12 knockdown in
transplanted A20 tumors (Fig. 4A). Surprisingly, we found that the
therapeutic effect of pevonedistat was not altered by the intratumoral
loss of UBC12 (Fig. 4B). Furthermore, TILs from pevonedistat-treated

mice whose tumors lacked UBC12 exhibited the same functional
features as TILs in control mice (Fig. 4C, D; Supplementary Fig. 5).
Taken together, our data strongly implicate CD8+ T cells as a

mediator of the anti-tumor effect of NAE inhibition.

HIF1A mediates NAE inhibition-induced anti-tumor immunity
The mechanism of neddylation-mediated immune regulation is
understudied. CRL substrates which accumulate following block-
ade of NAE enzymatic activity may mediate immune effects.
Among these substrates, GATA3 and HIF-1α have been shown to
modulate expression of immune checkpoint molecules and
cytokine secretion by immune cells [29–31]. Hence, they were
further investigated here. Treatment with pevonedistat led to
accumulation of HIF-1α in TCR-stimulated primary patient-derived
T cells in vitro (Fig. 5A). By contrast, we observed a dose-
dependent downregulation of GATA3 following pevonedistat
exposure of human T cells. We next generated HIF1A knockdown
in primary patient-derived T cells (Fig. 5B). Unlike control cells,
CD4+/CD8+ human T cells which lacked HIF-1α failed to
upregulate checkpoint molecules and secrete cytokines upon
treatment with pevonedistat in vitro (Fig. 5C, Supplementary
Fig. 6). Furthermore, loss of HIF-1α partially abrogated NAE
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inhibition-induced cytotoxicity of allogeneic T cells (Fig. 5D),
suggesting that immunomodulatory effect of pevonedistat is at
least in part mediated via HIF-1α.
To further elucidate the role of CRL blockade in HIF-1α

upregulation, we generated UBE2M knockdown in primary

patient-derived T cells (Fig. 5E). As predicted, UBE2M knockdown
resulted in upregulation of HIF-1α protein expression, albeit to a
lesser degree than pevonedistat treatment. This was likely
explained by incomplete knockdown of UBE2M. Interestingly, we
also observed that treatment with pevonedistat increased HIF-1α
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mRNA transcript levels (Fig. 5B), suggesting that pevonedistat
mediates HIF-1α levels via additional mechanisms, not limited to
regulation of protein turnover.

NAE inhibition enhances efficacy of PD-1 blockade
We postulated that since NAE inhibition enhances T-cell anti-
tumor immunity, pevonedistat may sensitize lymphoid tumors to
immune checkpoint inhibitors. While PD-1 inhibition exhibited a
partial anti-tumor effect, combined treatment with pevonedistat
arrested in vivo growth of A20 lymphomas (Fig. 6A). This was
accompanied by increased IFN-γ production in both CD8+ and
CD4+ murine TILs (Fig. 6B, C). Moreover, combined treatment
upregulated secretion of multiple cytokines by the CD4+ TILs
(Fig. 6C). As expected, the combination of pevonedistat and

anti-PD-1 had no therapeutic efficacy in A20 B2M-KO lymphomas
(Supplementary Fig. 7A, C).
Previous studies have shown that pevonedistat may upregulate

PD-L1 expression by the tumor cells via MYC oncogene [18, 32].
Consistent with this notion, we found that treatment with
pevonedistat upregulated MYC expression, but not IFN-γ, in A20
cells in vitro (Supplementary Fig. 7D, E). Furthermore, both in vitro
and in vivo treatment with pevonedistat led to increased PD-L1
expression by A20 cells (Supplementary Fig. 7F), possibly
accounting for their sensitization to combined PD-1 blockade.
Coupled with the above evidence that inactivation of the
neddylation pathway in the tumor does not negative impact
in vivo effect of pevonedistat, this supports the idea that immune
effects of NAE inhibition likely result from a direct effect on T cells.

A 

B-ac�n

UBC12

Sh UBE2M

Sh Ctrl 1 2 3 4

0 5 10 15 20
0

500

1000

Days

Tu
m

or
vo

lu
m

e
m

m
3 sh Ctrl vehicle

sh Ctrl pevo
sh UBE2M vehicle

pevo

sh UBE2M pevo

B

0

2000

4000

6000

8000

10000

#
PD

-1
+

C
D

8+
T

ce
lls

/m
g

Sh UBE2M
Vehicle Pevo

0

200

400

600

#
C

TL
A

-4
+

C
D

8+
T

ce
l ls

/m
g

Sh UBE2M
Vehicle Pevo

0

500

1000

1500

#
IF

N
-γ

+
C

D
8+

T
c e

lls
/ m

g *

Sh UBE2M
Vehicle Pevo

C

0

2000

4000

6000

8000

10000

#
C

D
25

+
Fo

xp
3+

C
D

4+
T

ce
lls

/m
g

Sh UBE2M
Vehicle Pevo

0

2000

4000

6000

8000

10000

#
PD

-1
+

C
D

4+
T

ce
lls

/m
g

Sh UBE2M
Vehicle Pevo

0

500

1000

1500

2000

2500

#
C

TL
A

-4
+

C
D

4+
T

ce
lls

/m
g

Sh UBE2M
Vehicle Pevo

0

500

1000

1500

2000

#
IL

-2
+

C
D

4+
T

ce
lls

/m
g

Sh UBE2M
Vehicle Pevo

0

200

400

600

800

1000

#
IF

N
-γ

+
C

D
4+

T
c e

l ls
/m

g

Sh UBE2M
Vehicle Pevo

0

100

200

300
#

IL
-4

+
C

D
4+

T
ce

lls
/m

g

Sh UBE2M
Vehicle Pevo

0

100

200

300

400

#
IL

-1
7+

C
D

4+
T

ce
lls

/m
g

Sh UBE2M
Vehicle Pevo

D

Fig. 4 Therapeutic effect of pevonedistat does not depend on tumor-intrinsic effects. A20 cells were transduced with lentivirus bearing
UBE2M shRNA and stable knockdown cell lines were selected by puromycin. shUBE2M or control A20 cells were transplanted into syngeneic
recipient mice, tumor-bearing mice were randomized into 2 groups and treated with vehicle control or pevonedistat 60mg/kg for 10 days.
A Whole-cell lysate proteins from A20 tumors collected at the end of mouse experiment were subjected to immunoblotting. 4 individually
obtained cell lines are shown. B Tumor growth of A20 lymphoma upon pevonedistat treatment (n= 6). C, D Immune profiles of CD8+ and
CD4+ TILs. Data are mean ± SD. *p < 0.05.

X. Wang et al.

1329

Leukemia (2023) 37:1324 – 1335



Immunomodulatory effect of pevonedistat patients with NHL
To evaluate relevance of our findings to human disease, we
analyzed T cells from patients with NHL who received pevonedistat
on the Phase I clinical trial (NCT03479268) [24]. PBMCs were isolated
from blood samples collected at baseline (prior to pevonedistat first

dose), and 3 and 24 h after pevonedistat infusion. We observed
enhanced IFN-γ secretion in CD4+ and CD8+ T cells as early as 3 h
post infusion (Fig. 7A). The induction of IFN-γ in CD8+ T cells
persisted for at least 24 h. Meanwhile, expression of either PD-1 or
CTLA-4 was not affected by pevonedistat (Fig. 7B). As expected,
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treatment with pevonedistat had no immediate effect on produc-
tion of other cytokines (Fig. 7C).
Additionally, paired samples from 4 patients with NHL enrolled

on the above study were submitted for scRNA-Seq to study the
effect of pevonedistat on immune cells. After quality control 2306
(PV7), 4533 (PV14), 7402 (PV23) and 992 cells (PV24) were
obtained. In the published analysis, we documented rapid
downregulation of NFκB signaling in malignant B cells following
pevonedistat infusion [24]. Here we conducted immune cell
population analysis. Between 2 and 6 immune cell types were
identified in each patient, including CD4+, CD8+ T cells, CD16+

and CD16- monocytes, B cells and NK cells (Fig. 7D). For each
immune cell type, we examined the effect of pevonedistat on the
transcriptome across multiple patients. Pathway level analysis

confirmed downregulation of “TNFα signaling via NFκB” in CD8+

T cells, CD16+ monocytes and NK cells 24 h post infusion,
consistent with our earlier above and the established target of
NAE inhibition (data not shown). Meanwhile, “IFN-α response” was
upregulated in CD4+ and CD8+ T cells as early as after 3 h of
pevonedistat infusion (Supplementary Fig. 8A). Furthermore,
upregulation of IFN-α and IFN-γ response was observed 24 h post
infusion in T cells, monocytes and NK cells (Fig. 7E), indicating that
pevonedistat triggered interferon signaling and thus reinvigorat-
ing T cells responses in vivo. Consistent with known mechanistic
effects of pevonedistat, we detected activation of DNA repair
pathways across multiple cell types (Supplementary Fig. 8B). We
also detected upregulation of HIF-1α gene signatures in CD4+

T cells (Supplementary Fig. 8C).

Fig. 5 HIF-1α mediates NAE effect in T cells. Magnetically enriched CD3+ cells were activated with 0.5 μg/mL αCD3/28 for 24 h. A Thereafter,
stimulation continued in the presence of the indicated doses of pevonedistat or vehicle control for an additional 72 h. Protein expression was
quantified by immunoblotting. B T cells were transduced by lentivirus bearing with HIF1A shRNA (or vector control) overnight. Thereafter,
stimulation continued in the presence of 0.25 μM pevonedistat or vehicle control for an additional 72 h. HIF-1α expression was quantified by
immunoblotting (left) and RT-PCR (right). C Expression of IFNγ, TNFα, CTLA-4 and PD-1 was quantified in CD8+ T cells by flow cytometry.
D T cells were stimulated with CD3/28 and treated with pevonedistat as above. The drug was washed off, and T cells were co-cultured with
CFSE-labeled JeKo-1 or VAL cells for 48 h. Apoptosis was quantified by flow cytometry using Annexin V/7-AAD. Data are mean ± SD. One-way
ANOVA was performed for statistical analysis, **p < 0.01, ***p < 0.001. E T cells were transduced with UBE2M shRNA (or vector control).
Thereafter, stimulation continued in the presence of 0.25 μM pevonedistat or vehicle control for an additional 72 h. HIF-1α expression was
quantified by immunoblotting and RT-PCR.
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Taken together, this data indicate that pharmacologic targeting
NAE had a distinct immunomodulatory effect in vivo.

DISCUSSION
Here we demonstrate that selective NAEi enhances anti-tumor
immunity in vitro and in syngeneic lymphoma mouse models. We
have previously shown that pevonedistat downmodulated IL-2
production and blunted proliferation of the CD4+ T cells derived
from patients with CLL [21]. Current in vitro analysis uncovered
additional effects, demonstrating upregulation of IFN-γ and TNF-α
by the TCR-stimulated CD8+ cells treated with pevonedistat.
Consistent with earlier data, both T-cell subsets showed increased
expression of CTLA-4, a checkpoint inhibitor, which could be related
to NAEi-mediated downregulation of NFAT and FoxP3 [21, 33, 34].
Importantly, we observed increased in vitro cytotoxic effects of

the NAEi-conditioned T cells against the lymphoma cell lines,
prompting us to investigate pevonedistat effects in vivo. Treat-
ment with pevonedistat resulted in delayed progression of A20
lymphoma tumors, associated with increased CD4+ and CD8+

T-cell infiltration. Furthermore, we have shown that the ther-
apeutic effect of pevonedistat was T-cell-dependent, since (1)
depletion of CD8+ T cells and (2) genetic knockout of β2-
microglobulin in A20 lymphoma cells fully reversed the anti-tumor
effect. Emerging data suggest that neddylation is capable of
regulating the tumor microenvironment, including macrophages,
dendritic cells, NK cells and T cells [21–23, 35–39].
The evidence of the role of neddylation in T-cell biology

remains limited and controversial. Loss of the Nedd8-conjugating
enzyme UBC12 in CD4+ T cells led to diminished proliferation,
skewed TH1/TH2 differentiation and reduced cytokine production
[36]. Pevonedistat had comparable effects in a malaria murine
model, where deficiency of UBA3, which encodes the catalytic
subunit of the NAE, significantly compromised survival, activation,
and proliferation of CD4+ T cells and impaired TH1/TFH differentia-
tion [37]. Furthermore, pevonedistat was shown to suppress the
ability of dendritic cells to stimulate murine and human allogeneic
T-cell responses [40]. However, despite the data regarding the role
of neddylation in non-cancer settings, an emerging body of data
favors the notion that targeting NAE may ultimately enhance T/NK
cell immunity. A recent study has shown that pevonedistat may
limit tumor infiltration by the immune suppressor cells, including
tumor-associated macrophages and myeloid derived suppressor
cells, and promote CD8+ T-cell infiltration in lung cancer models
[41]. In multiple myeloma models, NAE inhibition upregulated
NKG2D ligands, leading to the activation of NK cells [22]. Here we
provide evidence that neddylation critically restraints anti-tumor
immunity, while its inhibition reverses this effect. This effect is not
limited to A20 model, but also occurs in the immunologically
“cold” Lewis lung carcinoma. Therefore, it is likely applicable
across a spectrum of tumor tissues.
In this study, we observed significant effects of pevonedistat on

CD8+ T cells. Yet we did not fully elucidate contribution of other
cells to anti-tumor immunity. In fact, given our earlier work
demonstrating that NAE inhibition suppressed expansion of Treg
cells and increased CD4+ T-cell polarization towards TH1
phenotype in vitro and in ova-stimulation model in vivo [21],
CD4+ T cells likely significantly contribute to anti-tumor effect.
Ongoing studies should further clarify the interplay between the
immune cell fractions upon NAE inhibition.
We further show that pevonedistat cooperates with checkpoint

inhibition in the A20 model. Our result is consistent with published
reports. As an example, concurrent targeting of NAE and PD-L1
restored anti-tumor immunity in prostate cancer models [42].
Genetic or pharmacologic targeting neddylation has previously
been shown to upregulate PD-L1 expression in gliomas via MYC
[18, 32]. While here we also found increased PD-L1 expression by
A20 cells exposed to pevonedistat, whether the combined effect

was due to inhibiting neddylation in the tumor versus a T-cell-
intrinsic effect or modulation of additional immune microenviron-
ment signaling [43], has not been addressed. To this end, McGrail
et al. suggested that NAE inhibition may enhance tumor
antigenicity. They reported that presence of microsatellite instability
(MSI) enhanced tumor cells dependence on neddylation to clear
misfolded protein aggregates resulting from destabilizing muta-
tions, leading to immunologic cell death with co-targeting NAE and
PD-1 [44]. By contrast, we for the first time demonstrate that
immunologic effects of NAEi are fully T-cell-dependent. Genetic
abolition of the neddylation pathway in A20 cells did not limit
growth of control tumors and, more importantly, did not abolish the
anti-tumor effect of pevonedistat. This gives further confidence that
the immunomodulatory effect of NAEi will be conserved across
multiple tumor types, irrespective of tumor genetic mutations.
The observed immunomodulatory effect of pevonedistat is not

entirely surprising given its effect on E3 ligase function. In a recent
study, avadomide, a Cereblon E3 ligase modulator, was shown to
induce type I and II IFN signaling in T cells, reinvigorating T-cell
responses in NHL models [45]. Avadomide promoted T-cell
proliferation and chemokine synthesis, upregulated PD-L1 in the
immune tumor microenvironment, and stimulated activation of
cytotoxic CD8+ T cells when combined with anti-PD-L1 antibodies
in patient-derived xenograft tumors. The immunomodulatory
effect of lenalidomide and other drugs in this class have long
been exploited in therapy of hematologic malignancies [46].
How exactly does pevonedistat achieves immunologic effects?

Here we have shown that pevonedistat upregulates expression of
HIF-1α, an established CRL protein substrate. In addition to that, we
also observed increased HIF1AmRNA transcript levels in cells treated
with pevonedistat. HIF1A knockdown compromised NAE-inhibition
mediated T-cell cytotoxicity in vitro, indicating that Nedd8-HIF-1α is a
critical pathway that governs immune response. HIF-1α deficiency
has been shown to cause reduced activation and tumor infiltration by
the CD8+ cytotoxic T cells, leading to compromised tumor cell killing
and alteration of tumor vascularization [31]. Furthermore, checkpoint
receptor expression (TIM3, PD-1, CTLA-4 and LAG-3), is in part
regulated by HIF-1α [31]. Thus, upregulation of CTLA-4 by pevonedi-
stat in T cells observed by us may also indirectly implicate HIF-1α
signaling pathway as a key NAEi mediator. HIF-1α turnover is
regulated by VHL andmutations in VHL, many occurring in the region
interacting with CRLs, disrupt the ubiquitylation of HIF-1α [47–49].
This mechanism remains an area of active investigation by our group.
Finally, we have shown that some of the effects observed

preclinically can be recapitulated in patients with NHL. We used
scRNA-Seq technology to demonstrate that patients who received
pevonedistat on a clinical trial exhibited disruption in NFκB
signaling and DNA repair pathways, consistent with known targets
of NAE inhibition [10]. And yet, a single pevonedistat infusion
resulted in upregulated IFN-γ secretion by CD8+ T cells, as well as
rapid induction of IFN signaling pathways across multiple cell
types. Taken together, our preclinical and clinical data strongly
suggest that neddylation is an important target which can be
exploited to enhance the anti-tumor immunity. Perhaps the future
studies should focus on combination strategies where pevonedi-
stat is employed to enhance efficacy of checkpoint inhibitors, bi-
specific antibodies or cellular therapies.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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