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CHRONIC LYMPHOCYTIC LEUKEMIA

Chronic lymphocytic leukemia presence impairs antigen-
specific CD8+ T-cell responses through epigenetic
reprogramming towards short-lived effectors
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T-cell dysregulation in chronic lymphocytic leukemia (CLL) associates with low response rates to autologous T cell-based therapies.
How CLL affects antigen-specific T-cell responses remains largely unknown. We investigated (epi)genetic and functional
consequences of antigen-specific T-cell responses in presence of CLL in vitro and in an adoptive-transfer murine model. Already at
steady-state, antigen-experienced patient-derived T cells were skewed towards short-lived effector cells (SLEC) at the expense of
memory-precursor effector cells (MPEC). Stimulation of these T cells in vitro showed rapid induction of effector genes and
suppression of key memory transcription factors only in presence of CLL cells, indicating epigenetic regulation. This was
investigated in vivo by following antigen-specific responses of naïve OT-I CD8+ cells to mCMV-OVA in presence/absence of TCL1
B-cell leukemia. Presence of leukemia resulted in increased SLEC formation, with disturbed inflammatory cytokine production.
Chromatin and transcriptome profiling revealed strong epigenetic modifications, leading to activation of an effector and silencing
of a memory profile through presence of CLL cells. Secondary challenge in vivo confirmed dysfunctional memory responses by
antigen-experienced OT-I cells generated in presence of CLL. Altogether, we show that presence of CLL induces a short-lived
effector phenotype and impaired memory responses by epigenetic reprogramming during primary responses.
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INTRODUCTION
The development of targeted small molecules such as BTK- and
BCL-2 inhibitors has revolutionized the treatment of chronic
lymphocytic leukemia (CLL). However, such treatments are not
curative, resulting in a growing number of patients with double-
class-resistant disease that lack effective salvage regimens [1].
Hence, in CLL an unmet need exists for additional therapeutic
strategies with curative potential. Although CLL-directed T-cell
therapy might be promising, there is a large gap between the
efficacy observed in CLL and that observed in relapsed or
refractory acute lymphoblastic leukemia, in which anti-CD19 CAR
T cells induce complete remission in over 90% of cases [2, 3]. In
CAR T-cell therapy of B-cell malignancies in general, and CLL
specifically, expansion and persistence of adoptively transferred
T-cell populations are considered a critical requirement for long-
term tumor immunity without relapse [4]. Less differentiated
(central) memory T cells are the main source of long-term
persistence and seem crucial for successful adoptive cell therapy,

in contrast to late-stage effector T cells that rapidly disappear
following transfer [5].
Skewing of T-cell differentiation has been well described in CLL and

is hallmarked by increasing absolute numbers of CD8+ T cells with
progressive reductions of naive and accumulation of highly
differentiated effector-memory subtypes [6]. The development of
naive T cells into memory and effector cell populations upon an
antigenic stimulus follows progressive epigenetic changes that
instruct unique gene expression profiles and functions [7]. Ex vivo
studies indicate that acquired T-cell dysfunction in CLL occurs through
direct and indirect interaction with CLL cells [8–10]. However, whether
CLL cells directly affect epigenetic programming and whether the
impact of CLL on T-cell skewing depends on CLL-specific antigen
recognition is currently unknown. It has been challenging to study the
effect of CLL on a primary antigen-specific response due to difficulty
to perform dynamic (long-term) T-cell studies on patient-derived
samples in vitro. Studying antigen-specific T-cell responses in CLL can
provide relevant clues how CLL influences T-cell functioning and
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skewing of non-CLL directed T cells, which may be of great
importance to fully understand T-cell immunity in CLL patients.
Antigen-experienced CD8+ T cells from CLL patients were found

to be skewed towards short-lived effector cells (SLECs) with
reduction of memory features. Stimulation of these T cells resulted
in the induction of an effector gene signature but only in presence
of autologous CLL cells. To gain insights into the bystander effect
of CLL on an antigen-specific immune response, we developed a
combined murine model utilizing the CD45.2+ Eµ-T-cell leukemia-
1 (TCL1) mouse model, that spontaneously develops an aggressive
CD5+ CLL-like disease [11], with a CD45.1+ OT-I mouse model,
which harbors CD8+ T cells that specifically recognize the
ovalbumin (OVA) peptide SIINFEKL [12]. These data show that
CLL-mediated changes in skewing and (recall) function are heavily
epigenetically and transcriptionally regulated, which may provide
clues for improvement of future T-cell-based therapies in CLL.

MATERIALS AND METHODS
Patients and controls
Peripheral blood mononuclear cells (PBMCs) were isolated and cryopre-
served from whole blood of CLL patients or buffy coats of age-matched
healthy donors (HD) (Table S1) as described before [8]. Written informed
consent was obtained from all subjects in accordance with the Declaration
of Helsinki and the study was approved by the medical ethics committee
at Academic Medical Center, Amsterdam, the Netherlands (ethics approval
number 2013/159).

Mice
C57BL/6J mice were obtained from Charles River Laboratories and were
6–12 weeks old at the start of the experiment, all animals were sex-
matched. OT-I transgenic (tg) and TCL1-tg mice were bred at the animal
facility of the Amsterdam UMC and University of Rijeka and were bled
monthly to monitor CLL development from the age of 8 months on. Upon
full CLL development, mice were sacrificed and splenocytes were frozen
for adoptive transfer (AT). Mice were housed under specific pathogen-free
conditions in individually ventilated cages. All animal experiments were
approved by the institutional animal experiments committees and
executed according to the institutional, national, and European guidelines.
More details regarding the ARRIVE guidelines can be found in the
supplemental methods.

mCMV-OVA and determining viral titers
Murine cytomegalovirus (mCMV)-IE2-OVA or mCMV-N4 (both mCMV-OVA
expressing the SIINFEKL peptide) and mCMV-Q4 (expressing SIIQFEKL)
were generated as described previously [13–15]. For mCMV-N4 and mCMV-
Q4, the bacterial artificial chromosome (BAC)-derived mCMV strain
MW97.01 (in-house produced) has previously been shown to be
biologically equivalent to the mCMV Smith strain (VR-1399; ATCC) For
virus quantification, titers were determined on mouse embryonic
fibroblasts by standard plaque assay.

In vivo experiments
C57BL/6J CD45.2 mice were intraperitoneally (i.p.) or intravenously (i.v.)
injected with PBS (WT mice) or 20 × 106 TCL1 splenocytes (CLL mice). Mice
were bled weekly to monitor CLL development. When mice fully developed
CLL-like disease (>70% CD5+CD19+ of lymphocytes in blood), 50.000 OT-I
cells were injected i.v., followed by i.p. injection of 0.1–0.2 × 106 PFU mCMV-
OVA per mouse and sacrificed 7 days post-infection. Five independent
experiments were performed using three different clones of TCL-1 cells.
For recall experiments, primary infection was done i.v. using mCMV-Q4.

CD45.1+ OT-I cells 7 days after primary infection were isolated using CD8+

T Cell Isolation Kit (Miltenyi) and 50.000 OT-I cells were transferred into
CD45.1+CD45.2+ WT mice. Five weeks after transfer mice were infected i.p.
with mCMV-Q4 and sacrificed 6 days after secondary infection.

In vitro stimulation
Both human and mouse cells were cultured in RPMI 1640 medium (Thermo
Fisher Scientific, supplemented with 10% fetal calf serum and 1%
penicillin/streptomycin.

Human CLL T cells were stimulated using anti-CD3 (clone1XE) and anti-
CD28 (clone 15E8) soluble antibodies for 2 days either in the original PBMC
pool or after T-cell enrichment using the EasySep human T cell enrichment
kit (StemCell technologies).
Mouse splenocytes were stimulated for 4 h with OVA-peptide (100 pg/

mL or 10 ng/mL, SIINFEKL, Invivogen) or PMA (10 ng/mL, Sigma Aldrich)
and ionomycin (1 µg/mL, Sigma Aldrich) in presence of Brefeldin A (10 µg/
mL, Invitrogen), GolgiStop (BD Biosciences) and anti-CD107a. Cytokine
production and degranulation were assessed via flow cytometry as
described below.

Flow cytometry
Cells were stained with antibodies (details in supplemental materials and
methods), acquired on BD FACS Canto or LSR Fortessa flow cytometer and
analyzed with FlowJo v10.

Nanostring assay
Human CD8+ T cells were FACS-sorted from the culture with CLL cells and
the enriched T-cell condition using the SH800 Cell Sorter (Sony), the cells
were pelleted and total RNA was isolated using the RNeasy mini kit
(Qiagen) following the manufacturers protocol. RNA was prepared with the
nCounter Low RNA input amplification kit (NanoString), samples were
analyzed on the nCounter SPRINT profiler using the CAR-T panel
(NanoString). For further details see supplemental materials and methods.

ATAC sequencing and gene expression profiling
Assay for transposase accessible chromatin sequencing (ATACseq) libraries
of OT-I cells were generated following the Omni-ATAC protocol [16]. For
RNA sequencing (RNSseq) total RNA from FACS-sorted OT-I cells was
isolated using the RNeasy micro kit (Qiagen) following the manufacturers
protocol. Reverse transcription quantitative polymerase chain reaction (RT-
qPCR) was used for gene expression analysis of a selection of genes. For
further details see supplemental materials and methods.

Statistical analysis
Data was checked for normality by a Shapiro-Wilk test. P values were
calculated using two-sided unpaired t tests or ordinary one-way ANOVA
(followed by Bonferroni’s post hoc test). Statistical analysis was performed
using Graphpad PRISM version 9.1.0 (significance P < 0.05). Data are
presented as mean ± standard deviation (SD) unless indicated differently.

RESULTS
CLL cells induce in vitro effector skewing accompanied by an
effector transcriptional signature
Compared to age-matched HD, T cells of CLL patients were
skewed towards an effector/memory phenotype demonstrated by
a reduced proportion of naïve cells and increased effector cells as
previously shown [9, 17] (Fig. 1A, gating strategy in Fig. S1). Non-
naive CD8+ cells were gated based on KLRG1 and CD127
expression in order to differentiate between memory precursor
effector cells (MPECs), cells that differentiate into long-lived
memory T cells, and SLECs, cells that usually contract after
infection, and only marginally contributing to memory formation
[18]. T cells from CLL patients were skewed towards SLECs at the
expense of MPECs (Fig. 1B). Expression of CD45RA, a marker of
differentiated TEMRA cells, was increased while CD28 was
decreased on SLECs from CLL patients as compared to HD. Total
CD8+ T cells of CLL patients showed reduced expression of naïve/
memory markers CD27 and CD28 (Fig. 1C).
So far, these data were obtained from samples directly after

thawing. Next, we studied responses upon T-cell receptor
stimulation presence or absence of CLL cells. To prevent bias by
subset skewing between healthy donors and CLL patients at
baseline, we applied a paired experimental design using only CLL
T cells stimulated in the presence or absence of their autologous
CLL cells, taking healthy donor PBMCs along for reference. After
2 days of T-cell stimulation, presence of CLL cells strongly reduced
T-cell activation in comparison to age-matched healthy donors
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measured by CD25 expression (Fig. 1D) as earlier described [8].
Transcriptional analysis of the CD8+ T cells from both culture
conditions demonstrated clear separation in a principal compo-
nent analysis (Fig. S2A). Presence of CLL cells induced an effector
gene signature in the T cells (Fig. 1E) and led to reduced
expression of memory-associated transcription factor BATF3 [19]. A
Gene Set Enrichment Analysis (GSEA) using eight pathways

curated by Hofland et al. demonstrated significant enrichment
of the effector gene set in the culture with CLL cells [20] (Fig. S2B;
Table S2).
Although T-cell dysfunction in conjunction with transcriptional

and phenotypical skewing towards (short-lived) effector cells
could be observed in this system, the full impact of CLL cells on
antigen-specific T-cell differentiation and function cannot be
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studied effectively in vitro. We, therefore, implemented mouse
models to allow more detailed characterization of antigen-specific
T-cell responses in the presence of CLL.

TCL1 leukemia skew antigen-specific T cells towards a
short-lived effector phenotype during an acute infection
Besides skewing towards an effector/memory phenotype, T cells
of CLL patients have an inverted CD4/CD8 ratio, compared to
healthy donors [9, 17, 21]. Concordantly, upon the development of
CLL-like disease in mice following adoptive transfer (AT) of
leukemic TCL1 splenocytes, this skewing and CD4/CD8 reversal
was also present and a trend towards increased PD-1 expression
on CD8+ T cells from CLL mice could be observed [22, 23] (Fig.
S3A–C). In order to study an acute primary T-cell response in the
presence of CLL-like disease, mice were weekly screened following
AT. Upon development of leukemia and associated native T-cell
skewing (Fig. S3A), OVA-specific OT-I cells with a different
congenic marker (CD45.1) were injected followed by infection
with mCMV-OVA (Fig. 2A). Age-matched mice without AT were
used as control. At the peak of infection (day seven) animals were
sacrificed and OT-I T-cell differentiation was assessed in various

organs (gating strategy in Fig. S4). As the spleen in this model
mostly resembles the lymph node environment in patients [11],
we focus on spleen unless stated otherwise. Both absolute
numbers, as well as percentage of splenic OT-I CD8+ cells, were
increased in TCL1 mice (Fig. 2B) and virtually all OT-I cells
differentiated into effector cells (Fig. 2C). In line with this, viral
clearance was not different when TCL1 or WT mice received OT-I
cells (Fig. 2D). However, TCL1-derived OT-I cells showed increased
SLEC skewing and decreased MPECs in both spleen and blood
(Fig. 2E and F, S5A). No MPEC/SLEC skewing was seen in
mesenteric and peripheral LNs, in line with no to low presence
of leukemic cells in in this model [11] (Fig. S5B). Together, these
data show that CLL-like disease skews (antigen-specific) T-cell
responses towards a SLEC phenotype at compartments with high
presence of leukemia cells, indicating impaired early memory
formation.

Restimulation of TCL1-derived OT-I cells results in
dysfunctional cytokine production and degranulation
To determine whether antigen-experienced OT-I cells derived from
TCL1 mice show signs of a dysfunctional recall response following
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infection, splenocytes were restimulated specifically with the OVA-
peptide or non-specifically using PMA/Ionomycin in vitro. Upon
specific restimulation, OT-I cells derived from TCL1 mice had lower
capacity to produce IFNγ, TNFα, IL-2 and had lower degranulation
capacity (CD107a) (Fig. 3A, S6A). Also, a trend towards lower
Granzyme B could be observed (Fig. S6A). Non-specific stimulation
also resulted in lower amounts of IFNγ, TNFα, CD107a, and IL-2 in the
CLL-derived OT-I cells (Fig. 3B, Fig. S6B). We next looked for
differences in cytokine expression specifically in the SLEC population
(KLRG1BRIGHT). Both IFNγ and CD107a expression were lower in OT-I
SLECS from TCL1 mice (Fig. 3C). In contrast, the endogenous CD8+

compartment of CLL mice. which have been in contact with TCL1 cells
during the entire experiment, showed increased IFNγ production,
equal TNFα levels and reduced CD107a expression upon stimulation
with PMA/ionomycin (Fig. S6C), compared to WT mice. This is similar
to what is described for CLL patients [8, 9]. In conclusion, cytokine
production and degranulation in OT-I cells from TCL1 mice are
impaired upon restimulation even within KLRG1+ cells.

TCL1-derived OT-I cells express lower levels of
memory-related transcription factors
Transcription factors play a major role in fate decision between MPECs
and SLECs [24]. We assessed expression of T-box expressed in T cells
(T-BET), Eomesodermin (EOMES), and B-cell lymphoma 6 (BCL-6).
T-BET is associated with SLEC formation, while EOMES and BCL-6 drive
memory development and MPEC differentiation [15, 25, 26]. In
concordance with the SLEC phenotype, TCL1-derived OT-I cells
showed increased T-BET expression, and decreased EOMES and a
trend towards lower BCL-6 expression (Fig. 4A). Development of T-cell
exhaustion has been described in CLL patients and in CLL mouse
models [9, 22, 27]. We, therefore, studied whether the observed
skewing and dysfunction were a derivative of exhaustion. In vivo
activated OT-I cells did express the exhaustion-associated markers PD-
1, TIM-3, CD101, and CD200R [28], but expression of these markers
was lower in the OT-I cells obtained from the TCL1 mice compared to
WT mice (Fig. 4B). No differences were found in the expression of
CTLA4 (Fig. S7A).
In conclusion, increased expression of T-BET and decreased

expression of EOMES and BCL-6 are likely important regulators of
the observed SLEC skewing, while no signs of increased
exhaustion could be find at the protein level.

Transcriptional program of OT-I cells reflects effector skewing
and reduced expression of memory genes in CLL mice
We next performed RNAseq to study transcriptional differences
between the antigen-experienced OT-I cells from WT and TCL1
mice. Differential expression analysis revealed 182 genes sig-
nificantly differentially expressed (FDR < 0.05 and fold change > 2)
whereby 123 genes were higher expressed in OT-I from TCL1 mice
(Fig. 5A). Expression of Klrg1 was higher in TCL1 and Il7r (CD127)
expression was reduced in TCL1 OT-I cells, in line with FACS data.
Moreover, expression of numerous known effector genes such as
Ccl4, Id2, and Ifng was increased in TCL1-derived OT-I cells (Fig. 5B,
left panel) whilst key memory genes such as Id3, Ccr7 and Sell
(encoding CD62L) were clearly downregulated in the TCL1
condition (Fig. 5B, right panel). Gene set enrichment analysis
showed that OT-I cells from TCL1 mice resemble the transcrip-
tional program of effector rather than memory CD8+ cells (Fig. 5C,
top panel). Additionally, WT OT-I cells were enriched for genes
upregulated in IL7R high effector CD8+ cells (Fig. 5C, bottom
panel). Expression of key effector and memory genes that were
found to be differentially expressed by RNAseq analysis was
confirmed by RT-qPCR (Fig. S8).
When comparing our data to publicly available data on CD8+

T cells in the TCL1 mouse model, we found that OT-I cells from
TCL1 mice were more similar to PD1-high and PD1-intermediate
cells as described by Hanna et al [29]. (Fig. 5D). Even though at
protein level we did not find clear indications of exhaustion, these
data demonstrated that CLL-like disease induced an (early)
exhaustive signature in OT-I cells at the transcriptional level.
TCL1-derived OT-I cells have altered chromatin accessibility and

show reduced accessibility of binding motifs for memory-related
transcription factors
To unravel underlying gene regulation leading to the transcrip-

tional differences and to assess whether CD8+ T-cell differentiation,
including SLEC and MPEC formation is epigenetically regulated in this
model [30], ATACseq analysis was performed on splenic OT-I cells
seven days after infection in order to measure chromatin accessibility.
A clear separation between the WT and TCL1 conditions was
observed in a principal component plot (Fig. S9A). In total 2615
genomic regions were significantly differential accessible (FDR < 0.05)
with 1620 regions more accessible in TCL1 OT-I cells (Fig. 6A, B). In
correspondence with SLEC skewing (e.g., KLRG1+) and higher gene
expression of Klrg1 in the OT-I from TCL1 mice, Klrg1 displayed more
accessible chromatin in the TCL1 condition (Fig. 6C, D). In line with the
hypothesis of impaired memory formation in CLL, chromatin of two
enhancer regions of Ccr7, a known memory marker on T cells [18],
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was less accessible in TCL1 mice (Fig. 6C, D). When comparing these
data to chromatin accessibility in CD8+ subsets as described by Scott-
Browne et al. [30], we found depletion of naive- and enrichment of
effector-specific accessible regions in the OT-I cells from TCL1 mice
(Fig. S9B).
To infer transcription factors associated with differences in

chromatin landscape, HOMER’s motif analysis was performed on
regions significantly more accessible in TCL1 and in WT (Fig. 6E). Clear
enrichment of ETS-family transcription factor motifs was observed in
OT-I from TCL1 mice, with ETS1 as most significant hit. More
accessible chromatin regions in TCL1 OT-I close to promoters (<3 kb)
that contain an ETS1 motif were annotated to effector-related genes
such as Klrg1, Lamp1 (encoding CD107a), and Ifng (Fig. 6F, Table S5)
and transcription factors Fosb, Id2 and Fos, known for establishing an
effector phenotype in CD8+ T cells [31–33].
In contrast, more accessible chromatin of antigen-experienced OT-I

cells from WT mice showed enrichment for high-mobility group
transcription factor motifs, more specifically the highly homologous
TCF/LEF family members (Fig. S9C, Table S6). Tcf7 (encoding TCF1) is
involved in self-renewal of T cells and its role in CD8+ T-cell memory
has been described extensively [34, 35], also in cooperation with LEF1
[36, 37]. Taken together, the chromatin accessibility profiles and
corresponding transcription factor motifs in OT-I from TCL1 mice
reflect an effector skewing at the expense of memory features.
Chromatin accessibility results overlap with gene expression data

on several crucial parts (Fig. S10A, Tables S7, 8). Genes that showed
more accessible chromatin in TCL1 OT-I such as Klrg1, Fos, Ifng, Ccl4,
Id2, and Entpd1 (encoding CD39) were also higher expressed in TCL1
OT-I and contained open ETS1 motifs in their promoters (Fig. S10B).
This gene profile largely overlaps with immune response genes that
specifically recruit the Ets1 transcription factor upon activation in
CD8+ T cells as described [38], indicating a central role for ETS1 in
establishing the effector transcriptional program. In WT OT-I Ccr7 and

Tcf7 were more accessible and higher expressed, which, together with
enrichment for TCF-family motifs, indicates a TCF-centered gene
regulatory network.
Together these data confirm an epigenetic and transcriptional

program skewed towards effector phenotype in TCL1-derived OT-I
cells, implying epigenetically regulated dysregulated memory
formation.

TCL1-derived memory T cells are defective upon secondary
infection
To determine if in vivo memory function was affected by CLL, as
hypothesized based on flow cytometry, epigenetic and transcrip-
tional profiles, recall responses were determined as depicted in
Fig. 7A. Six days after the secondary infection with mCMV-OVA,
decreased percentage of OT-I cells of total CD8+ cells was
observed in mice that received TCL1-derived OT-I cells, coinciding
with decreased absolute OT-I counts (Fig. 7B). Most OT-I cells
differentiated into effector cells (CD62L−CD44+) and no difference
in the percentage of memory cells (CD62L+CD44-) was observed
(Fig. S11A). Despite lower persistence of the TCL1-derived OT-I
cells, they showed increased production of effector cytokines IFNγ,
TNFα, and Granzyme B, while no difference in CD107a was
observed (Fig. 7C, Fig. S11B) and no differences in T-BET or EOMES
could be observed (Fig. S11C). Together these data indicate
decreased persistence and proliferation of antigen-experienced
OT-I cells following a secondary infection, implying impaired
memory responses.

DISCUSSION
Our study demonstrates that the presence of CLL cells results in
skewing towards a dysfunctional short-lived effector phenotype
following a non-CLL antigen-specific T-cell response. Skewing is
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accompanied by an altered epigenomic and transcriptomic regulation
of key effector and memory genes, leading to impaired CD8+ T-cell
memory formation. In vitro modeling of response to a single antigen
cannot fully recapitulate natural human infections, but these results
imply that CLL-like disease hampers optimal memory T-cell formation
against specific antigens. This impacts responses to viral infections in
patients and might have implications for the efficacy of cellular
therapy. Although mechanistic studies on T-cell memory against
COVID-19 are lacking, recent reports showing reduced cellular
immune responses to the BNT162b2 mRNA COVID-19 vaccine in
most CLL patients do indicate diminished anti-viral responses in this
disease [39, 40].

A key question is how CLL or TCL1 cells impair T-cell function
mechanistically. Although effector skewing was observed, these
cells had impaired ability to perform effector functions such as
IFNγ production, 7 days after primary infection. Reduced cytokine
expression could be a marker of exhaustion [41]. Despite our
observations that immune checkpoint expression was not
upregulated in OT-I cells of TCL1-mice at the protein level, we
did find enrichment of exhaustion-related genes when comparing
our data to publicly available data on exhausted CD8+ cells from
the same TCL1 model. These observations are indicative of an
early exhaustive state without the classical markers being
upregulated (yet) on the cell surface. Another scenario is that
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CLL-like disease disrupts the normal cellular architecture within
secondary lymphoid organs [42]. CLL is well known to accumulate
in lymph nodes and spleen and may impact antigen presentation
and the chemokine and cytokine environment. Alternatively, CLL
cells may be directly responsible for defective T-cell activation.
These cells have impaired antigen-presenting capacity which
correlates with low expression levels of costimulatory markers
such as CD80 and CD86 [43].
Epigenomic analyses are widely employed to understand T-cell

dysfunction, yet how CLL influences the T-cell epigenome is still
unknown [7]. We show extensive differences in OT-I cells from WT
and TCL1 mice regarding chromatin accessibility, establishing that the
presence of leukemic cells during infection alters the T-cell
epigenome. Differential chromatin accessibility profiles, transcription
factor motif enrichment, and altered gene expression are all indicative
of skewing towards effector differentiation in TCL1 mice. Whilst the
role of T-BET is well established in SLEC formation [44], we
demonstrate ETS-family transcription factors might also be involved
in the CD8+ effector skewing. Recently, Zhong et al. described that
ETS1 acts as a “housekeeper” in CD8+ T cells and its function is highly
dependent on recruitment of a variety of transcription factors and
other co-factors. Furthermore, in a subset of immune response genes,
highly overlapping with our effector gene signature, ETS1 is
specifically recruited upon activation [38]. Others have described that
exhausted CD8+ T cells show enrichment of ETS binding sites
compared to stem-like memory cells [35]. How CLL affects the role of
ETS1 in CD8+ T cells remains to be elucidated. In addition, the data
imply a role for transcriptional regulators Id2 and Id3, as Id2 had more
open chromatin and was higher expressed in TCL1-derived OT-I cells,
whilst Id3 was higher expressed in WT OT-I. Interplay between these
two factors connects with cell-fate determination as Id2 is essential for
short-term survival of effector cells and its loss leads to enhanced
memory formation coinciding with increased Eomes and Tcf7
expression [33, 45]. On the other hand, Id3 is enriched in MPECs
and required for their long-term survival [46]. This is in agreement
with our data where we observe reduced BATF3 expression in the
patient samples, an essential transcription factor for the transition of
CD8+ effector to memory cells [19], and depletion of motifs for the
TCF/LEF family transcription factors, well established for their role in
T-cell memory [32] in TCL1 mice. It was recently demonstrated that
TCF1 and LEF1 highly impact persistence of CAR T cells in acute

lymphoblastic leukemia and CLL [47]. The reduced expression of Tcf7
in CLL OT-I cells is therefore a likely cause of the observed impaired
persistence.
Since memory properties are critical for autologous T-cell therapy,

these data provide clues for future T-cell-based therapies for CLL. Our
results show that exposure of T cells to a CLL-like environment during
priming impairs memory recall during secondary antigen-specific
response. Parallels between memory formation after acute infection
or upon CAR T-cell treatment can be drawn as both depend on the
capacity for self-renewal and T-cell persistence. Specifically, the role of
TCF1 and LEF1 seems crucial in both models [4, 47]. In CLL patients it
was determined that remission corresponded to elevated numbers of
memory-like cells before CAR T-cell production as well as a memory-
related transcriptional profile in the pre-infusion product [4]. Overall,
our model is suitable for increasing understanding of key T-cell
dynamics and guiding future research into this clinically relevant
problem.
In conclusion, our results demonstrate that CLL induces skewing

of antigen-specific T cells towards a dysfunctional short-lived
phenotype during acute infection. This is accompanied by the
remodeling of chromatin accessibility, resulting in impaired
memory formation. Since T-cell dysfunction in the TCL1 model
and CLL patients is highly similar, this implies CLL might have a
similar effect during infection in patients.
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