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The histone demethylase KDM5C functions as a tumor
suppressor in AML by repression of bivalently marked
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Epigenetic regulators are frequently mutated in hematological malignancies including acute myeloid leukemia (AML). Thus,
the identification and characterization of novel epigenetic drivers affecting AML biology holds potential to improve our basic
understanding of AML and to uncover novel options for therapeutic intervention. To identify novel tumor suppressive epigenetic
regulators in AML, we performed an in vivo short hairpin RNA (shRNA) screen in the context of CEBPAmutant AML. This identified the
Histone 3 Lysine 4 (H3K4) demethylase KDM5C as a tumor suppressor, and we show that reduced Kdm5c/KDM5C expression results
in accelerated growth both in human and murine AML cell lines, as well as in vivo in Cebpa mutant and inv(16) AML mouse models.
Mechanistically, we show that KDM5C act as a transcriptional repressor through its demethylase activity at promoters. Specifically,
KDM5C knockdown results in globally increased H3K4me3 levels associated with up-regulation of bivalently marked immature
genes. This is accompanied by a de-differentiation phenotype that could be reversed by modulating levels of several direct and
indirect downstream mediators. Finally, the association of KDM5C levels with long-term disease-free survival of female AML patients
emphasizes the clinical relevance of our findings and identifies KDM5C as a novel female-biased tumor suppressor in AML.

Leukemia (2023) 37:593–605; https://doi.org/10.1038/s41375-023-01810-6

INTRODUCTION
AML is an aggressive blood cancer characterized by rapid
accumulation of immature myeloid precursors in bone marrow
(BM) and peripheral organs. Patient survival remains poor for most
AML subtypes, thus a deeper understanding of AML biology is
needed. This is highlighted by the success of a few targeted
treatments for specific AML subtypes including all-trans retinoic
acid for treatment of t(8;21) AML [1].
Epigenetic factors along with transcription factors, growth

regulators and splicing factors are frequently mutated in AML, and
their perturbation in pre-malignant cells can provide a permissive
environment for transformation and tumorigenesis [2]. Epige-
netics typically defines the reversible chemical modifications to
DNA and histones regulating chromatin accessibility and

transcription without changing the DNA sequence. For example,
the presence of H3K4me3 (activating) and H3K27me3 (repressive)
histone modifications at the same promoter maintains a bivalent
“ready-to-fire” state often seen at promoters of lineage-specific
genes in embryonic stem cells (ESCs) and hematopoietic stem
cells (HSCs) [3, 4].
The coordinated actions of epigenetic readers, writers, and

erasers are important for transcriptional regulation and cell
identity [5]. Consistently, epigenetic dysregulation is frequent in
AML, and factors involved in DNA methylation and histone
modification are recurrently mutated in AML patients [6] or
dysregulated transcriptionally [7]. Here we assessed the impor-
tance of epigenetic dysregulation in AML by conducting an in vivo
shRNA screen in a mouse model of bi-allelic CEBPA mutant AML.
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Specifically, AML development in this model is driven by the
homozygous expression of the CebpaLp30 allele thereby phenoco-
pying bi-allelic CEBPA mutant AML (affecting 7–10% of AML
patients) where the truncated CEBPA-p30 variant constitutes the
sole functional CEBPA isoform [8, 9]. As CEBPA mutant AML is
associated with favorable prognosis [10], this makes the Lp30
model especially suitable for assessing an accelerated disease
latency phenotype. Using this set-up, we identified KDM5C, a
H3K4me2/me3 demethylase, as a tumor suppressor in AML and
further validated its function in cell lines and primary human AML.
We found that Kdm5c knockdown (KD) leads to transcription from
low-activity and bivalent/repressed promoters associated with
high KDM5C binding causing upregulation of genes normally
expressed in immature progenitors, resulting in a more aggressive
leukemia. Furthermore, we found that KDM5C levels predicts
outcome in female AML patients thus identifying KDM5C as a
female-biased tumor suppressor in AML.

METHODS
Animal experiments
C57BL6/6 J.SJL congenic recipients (female, 10–15 weeks old) were sub-
lethally irradiated (500 cGy) 8–18 h prior to intravenous injection with
CebpaLp30/Lp30 (from hereon, Lp30) AML cells [8]. When indicated, cells were
premixed with 4.5 × 105 irradiated (2000 cGy) non-engrafting carrier cells
per recipient.
See supplementary methods for detailed descriptions.

Plasmids
Plasmids and cloning procedures are described in Supplementary
Methods.

In vitro experiments
All in vitro experiments are described in detail in Supplementary Methods.

Flow cytometry analysis
Femur, tibia, and hip bones were harvested from pre-leukemic mice,
crushed, using mortar and pestle, and resuspended in phosphate buffed
saline (PBS) with 3% fetal bovine serum (FBS). Flow cytometry was
performed as described in Supplementary methods using antibodies list in
Supplementary Table 2.

RNA preparation and RT-qPCR
RNA was extracted from 1–5 × 105 cells using the RNeasy Kit (Qiagen)
according to the manufacturer’s recommendation. cDNA was produced
using the Protoscript M-Mulv First Strand Synthesis Kit (New England
Biolabs). Primers (Supplementary Table 3) for RT-qPCR were designed
using Primer3 [11] or Primer-Blast [12] software with an optimal annealing
temperature of 60 °C.

Chromatin immunoprecipitation sequencing (ChIP-seq)
ChIP-seq was performed on 5 × 105 FACS-sorted GFP+ shControl and
shKdm5c-I Lp30 cells from murine BM as previously described [13].
Antibodies: a-H3K4me3 (9751 S, Cell Signaling), a-H3K4me1 (ab8895,

Abcam), a-H3K27ac (ab4729, Abcam), a-H3K27me3 (C36B11, Cell Signaling)
and IgG (I8140, Sigma).
ChIP-conditions and bioinformatical analyses are described in detail in

Supplementary methods.

Data access
Sequencing data can be retrieved from Gene Expression Omnibus
(GSE141477). The mass spectrometry data are retrievable from the
ProteomeXchange Consortium via the PRIDE partner repository
(PXD016568). The shRNA screen data are provided in Supplementary
Tables 4–7. All other data are available from the authors on request.

Data analysis, visualization, and statistics
All graphs and analysis were created using GraphPad Prism 7.0 or R [14].
Illustrations were made using Adobe Illustrator CS6 version 16.0.0.

Data were analyzed for significance using One-Way-Anova for multiple
comparisons and T-test for pairwise comparisons. Error bars indicate
standard deviations unless otherwise stated. For Kaplan–Meier plots, p-
values were calculated using a Log-rank test. P < 0.05 were considered
significant. In vivo experiments were carried out in biological replicates,
whereas in vitro experiments were carried out in technical replicates.
Unless otherwise stated, experiments were carried out once. No blinding of
experimental groups was performed. No statistical method was applied to
predetermine sample sizes, but sample sizes are indicated in relevant
figures. For BMT experiments, recipient mice were randomized to receive
control and test leukemic cells, respectively. For survival analysis, animals
were shuffled between cages.

RESULTS
Identification of Kdm5c as a putative tumor suppressor in AML
To identify factors affecting AML progression, we performed a
pooled in vivo shRNA screen in the transplantable murine
CebpaLp30/Lp30 (Lp30) AML model [8] using a library of 849 shRNAs
targeting 315 chromatin-associated factors (Fig. 1A, B; Supple-
mentary Tables 4–6) [15]. The screen methodology has previously
been reported [16], and relies on the fact that targeting of
oncogenes and tumor suppressors will lead to depletion and
selection, respectively, of affected clones in a pooled setting.
Briefly, Lp30 murine AML cells transduced with pools of shRNA-
encoding retrovirus were transplanted to sub-lethally irradiated
recipient mice. BM cells from these recipients were harvested after
four weeks, and the shRNA repertoires at this timepoint were
compared to input cells to identify shRNAs depleted or enriched
during in vivo growth of the tumor.
Here, we focused on enriched shRNAs targeting candidate

tumor suppressors. shRNAs were ranked by their mean fold-
change (FC), and genes were scored as hits if targeted by
multiple shRNAs ranking within the top 25th percentile of
enriched shRNAs. The list of potential tumor suppressor hits
included both known factors, such as Ezh2 and Tle4, as well as
novel candidates, including Kdm5c, Pcgf3, Chd1 and Pbrm1
(Fig. S1A–C). KDM5C belongs to a family of four histone
demethylases, KDM5A-D, which are ubiquitously expressed in
the hematopoietic system (Fig. S1D). It catalyzes the demethyla-
tion of di- and tri-methylated Lysine 4 on Histone 3 (H3K4me2/3)
[17, 18] and was the only KDM5 member scoring in our screen
(Fig. S1A; Supplementary Table 7). All KDM5 members were
minimally deregulated at the protein level in Lp30 AML versus
normal progenitors (Fig. S1E). Kdm5c is found mutated in
neurological disorders [19, 20] and in various cancer types,
including clear cell renal cell carcinoma (ccRCC) [21–23], breast
cancer [24], and AML [25–27]. Similarly, KDM5C scored in a
CRISPR-screen in human AML cell lines [28] but the functional
implications of its dysregulation in AML has not been described.
We, therefore, forwarded Kdm5c for further functional analysis.
Kdm5c/KDM5C is X-linked and escapes X-inactivation in female
cells [29]. Conversely, male cells express the highly redundant
Y-linked Kdm5d/KDM5D locus. Since this could potentially result
in confounding compensatory effects in male cells, we chose to
exclusively focus on female cell lines and animal models
(including Lp30 cells) for functional experiments.

Kdm5c-knockdown is associated with a competitive
advantage in murine AML
We first validated the impact of Kdm5c-KD in Lp30 AML by
competitive BM transplantation of 1:1 mixtures of “target” cells
(expressing either Kdm5c-shRNA or non-targeting shRNA (GFP+))
and “competitor cells” (expressing non-targeting shRNA (YFP+))
and subsequently analyzed the BM “target/competitor” ratio by
flow cytometry (Fig. 1C, D). Supporting a tumor suppressive
function, Kdm5c-KD resulted in a profound enrichment (19-32
fold) of cells expressing Kdm5c-targeting shRNAs compared to
control AML cells (Fig. 1E).
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Next, we assessed whether Kdm5c-KD affected the survival of
mice transplanted with sorted GFP+ Lp30 AML cells. Mice
transplanted with Kdm5c-KD cells lived significantly shorter than
the control group (median survival of 41.5/42.5 days vs. 47.5 days;
Fig. 1F). Importantly, Kdm5c-targeting shRNAs did not affect other

KDM5 members (Fig. 1G and S1F) thereby supporting a specific
role for KDM5C in AML.
To investigate whether this phenotype was unique for CEBPA

mutant AML, we performed a series of in vivo and in vitro
experiments using two additional AML models. Firstly, we
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performed a survival experiment in mice transplanted with Inv(16);
Tet2−/− AML cells [30] and, in concordance with the effect in Lp30
cells, found that Kdm5C-KD resulted in shorter survival times
(Fig. S1G). Secondly, Kdm5C-KD resulted in a mild competitive
advantage in vitro growth assays in both Inv(16)/Tet2−/− cells and
MLL-AF9-transformed cells [31] (Fig. 1H and S1H, I). Except for a
mild depletion of shKdm5c-II expressing cells (potentially due to
off-target effects) Kdm5c KD had no effects in normal c-Kit-
enriched BM cells (Fig. 1I). Combined, these data demonstrate that
Kdm5c KD results in a selective growth advantage in malignant
hematopoietic cells which appears absent in their normal
counterparts.
To rule out potential shRNA off-target effects, we performed

CRISPR-Cas9 knockout (KO) experiments in MLL-AF9 cells
(Fig. S2A). CRISPR KO efficiently reduced protein expression while
moderately affecting Kdm5c RNA levels (Fig. S2B, C). Consistent
with the shRNA-KD data, Kdm5c-KO resulted in faster growth
(Fig. S2D, E). This was associated with a positive, albeit mild,
selection for deletions (gRNA-1) and insertions (gRNA-2) in the
Kdm5c gene over time (Fig. S2F, G).
In summary, Kdm5c-KD led to a competitive advantage in three

different murine AML models and was associated with reduced
median survival of AML in vivo. Collectively, these results confirm
a tumor suppressive role for KDM5C in AML.

Kdm5c-knockdown leads to increased H3K4me3 at promoters
and enhancers
KDM5C has been reported to regulate H3K4-methylation at active
(H3K4me3high, H3K27achigh), at primed/bivalent (H3K4me3low,
H3K27me3) promoters and active/poised (H3K4me1, +/−
H3K27ac) enhancers [17, 32, 33]. To assess regional changes in
the substrate (H3K4me3) and product (H3K4me1) of KDM5C at
promoter- and enhancer sites, we performed Chromatin Immuno-
Precipitation sequencing (ChIP-seq) of H3K4me1, H3K4me3,
H3K27me3, and H3K27ac in transplanted Kdm5c-KD and control
Lp30 AML cells. Due to lack of ChIP-grade antibodies, we were
unable to assess KDM5C-binding, and we, therefore, correlated
our data with published biotin-tagged KDM5C ChIP-seq data
derived from ESCs and neuronal progenitor cells (NPCs) [34].
Kdm5c-KD led to an increase in H3K4me3 and a reduction of

H3K4me1 at promoter and enhancer regions with expected
KDM5C-binding (Fig. 2A, B and S3A–C). To further study the
regional importance of KDM5C, we identified differentially marked
promoter and enhancer peaks (Fig. 2C). Consistent with its
enzymatic activity, Kdm5c-KD led to increased H3K4me3- and
decreased H3K4me1-levels at thousands of promoters and
enhancers, thereby demonstrating a marked epigenetic re-wiring.
To assess the effect of Kdm5c-KD on global histone modification

levels, we performed mass spectrometry in Kdm5c-KD and control
Lp30 AML cells (Fig. 2D–F and S3D–G; Supplementary Table 8).
Consistent with our ChIP-seq data, mass spectrometry demon-
strated a tendency towards a global increase in H3K4me3 levels in

Kdm5c-KD Lp30 cells which was significant when not adjusting for
multiple testing (Fig. 2D, E). Furthermore, no other histone
modifications significantly changed in Kdm5c-KD Lp30 cells.
In summary, Kdm5c-KD is associated with increased H3K4me3-

and decreased H3K4me1-levels, at regions with expected
KDM5C binding, without major effects on additional histone
modifications.

Increased H3K4me3 levels at bivalent gene promoters are
associated with a gain in gene expression
KDM5C has both transcriptionally activating and repressive
functions and its transcriptional role may therefore be context-
dependent [34, 35]. To gain further mechanistic insights into
KDM5C-mediated gene regulation in AML, we performed RNA-
sequencing (RNA-seq) on transplanted Kdm5c-KD and control
Lp30 AML cells (Fig. 3A and S4A–E). Overall, we found 489
differentially expressed genes with 322 up- and 167 down-
regulated genes (FDR < 0.05 for either shRNA; Fig. 3A; Supple-
mentary Table 9). Both Kdm5c-shRNAs resulted in comparable
transcriptional deregulation (Fig. S4A–D).
To determine the effect of KDM5C activity on gene expression,

we divided genes based on transcriptional deregulation (Up,
Down, or Neutral; Fig. S4E) in Kdm5c-KD vs control and correlated
gene expression with ChIP-signals of H3K4me1, H3K4me3,
H3K27ac, H3K27me3, and previously published KDM5C binding
data [34] at promoters/enhancers (Fig. 3B). Interestingly, H3K4me1
and H3K4me3 levels changed significantly at promoters of both
neutral- and upregulated genes in Kdm5c-KD cells, while changes
in H3K27me3-levels correlated inversely with transcriptional
changes (Fig. 3C–E). In contrast, modest or no changes were
observed in H3K27ac across gene classes (Fig. 3F). In concordance
with the H3K4me3-changes, KDM5C occupancy was higher at
promoters of neutral/upregulated genes compared to down-
regulated genes (Fig. 3G and S4F). Although not a direct
proof, these data suggest that transcriptional upregulation is a
direct consequence of loss of a KDM5C-generated repressive
promoter mark.
Of note, deregulated genes had markedly lower RNA expression

and H3K4me3 levels as well as higher H3K27me3 levels compared
to neutral genes in control cells (Fig. S4E, G). Thus, we
hypothesized that Kdm5c-KD affected low-activity promoters to
a higher degree. Indeed, in concordance with H3K4me3-changes,
both active and bivalently marked (low-activity) promoters were
associated with high KDM5C occupancy (Fig. 3H). Additionally,
Kdm5c-KD increased expression from bivalent promoters to a
larger extent than that from active promoters (Fig. 3I, J and
Fig. S4H; Supplementary Table 9). Collectively this indicates that
bivalent promoters are more affected by Kdm5c-KD than
promoters with robust activity.
In contrast, down-regulated genes were associated with shorter

CpG-island length at promoters and a higher number of predicted
enhancer interactions compared to upregulated genes (Fig. S4I, J).

Fig. 1 Kdm5c-knockdown is associated with a competitive advantage and decreased latency in AML. A Schematic outline of the in vivo
shRNA screen targeting chromatin associated factors. B Relative proportions of chromatin-associated factors targeted in the shRNA-library
based on Gene Ontology analysis. The library consists of 849 shRNAs targeting 315 genes. C Schematic outline of the competitive assay in vivo
(top panel) and in vitro (bottom panel). The in vivo competitive assay was performed by BMT of Lp30 cells transduced with target-shRNA (GFP-
selection) or competitive non-targeting shRNA (YFP-selection) in a 1:1 GFP/YFP ratio. The competitive advantage was assayed by flow
cytometry of the BM 3 weeks later. For the in vitro competitive assay, a fraction of the cell culture was analyzed by flow cytometry at each
passage. D Representative flow cytometry profiles of input and output (4 weeks post-BMT) of shControl and Kdm5c-KD groups. Target-shRNA-
transduced cells are GFP-positive versus YFP-positive BM cells transduced with competitive non-targeting control-shRNA. E Performance of
Lp30 Kdm5c-KD cells in BMT normalized to input ratio of target/competitor cells (n= 4 per group). F Survival analysis of mice with transplanted
shControl or Kdm5c-KD Lp30 cells (n= 8 per group). G Relative expression of Kdm5a, Kdm5b, and Kdm5c in shControl and Kdm5c-KD groups
assayed by RT-qPCR and normalized to Actb expression. H Survival analysis of mice transplanted with Inv(16)/Tet2−/− cells transduced with
shControl or shKdm5c. Insert: Relative expression of Kdm5a in shControl and Kdm5c-KD groups assayed by RT-qPCR and normalized to Actb
expression. Relative expression of Kdm5c in shControl and Kdm5c-KD cells was assayed by RT-qPCR and normalized to Actb expression. These
data are a representative example of two independent experiments. I Competitive culture of control and Kdm5c-KD Inv(16)/Tet2−/− cells.
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We, therefore, investigated whether loss of KDM5C led to reduced
enhancer-driven transcription due to reduced H3K4me1 as
previously described [34]. However, we found that H3K4me1,
H3K4me3, H3K27ac, and H3K27me3 levels at enhancers follow
their global changes, irrespectively of expression changes of the
nearest gene (Fig. S4K–N). Finally, as a proxy for reduced KDM5C
activity, we assessed the distribution of enhancers with

deregulated H3K4me1/3-levels but found no significant correla-
tion to expression changes (Fig. S4O). Thus, transcriptional
downregulation is likely an indirect effect of Kdm5c-KD.
In summary, Kdm5c-KD leads to de-repression of low-activity

bivalent promoters associated with high KDM5C occupancy
concomitantly with an increase in H3K4me3 occupancy. Thus,
upregulated genes are likely a direct result of loss of KDM5C-
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mediated H3K4me2/3 demethylation. In contrast, we could not
link transcriptional downregulation directly to KDM5C activity at
enhancers.

Kdm5c-KD leads to de-differentiation of Lp30 AML
To explore the potential perturbation of specific molecular
pathways following Kdm5c-KD, we performed Gene Set Enrich-
ment Analysis (GSEA) and mainly found deregulation of
differentiation-related signatures (Fig. 4A). Bivalent genes are
especially enriched in immature stages and are generally resolved
during differentiation [36]. We, therefore, investigated the
expression of de-regulated genes through normal myelopoiesis
(Fig. 4B). Indeed, upregulated genes were mainly expressed in
HSC-enriched Lin− Sca-1+ c-Kit+ (LSK) cells and decreased
towards maturation. Oppositely, down-regulated genes were
mainly expressed in more mature cells.
Consistent with this de-differentiation phenotype at the level

of gene expression, Kdm5c-KD lead to increased frequencies of
immature (c-Kit+) and lower frequencies of mature (Mac-1+)
Lp30 cells (Fig. 4C, D). We observed a similar tendency in
Kdm5c-KD MLL-AF9 cells (Fig. S5A, B). Supporting the immature
phenotype, Kdm5c-KD Lp30 AML cells displayed significantly
higher colony-forming capacity in vitro (Fig. 4E). Although
Kdm5c-KD was not associated with any detectable changes in
cell cycle or apoptosis in the total leukemic population
(Fig. S5C–E), we found that the c-Kit+ cells cycle 2.9-fold faster
than Mac-1+ cells (Fig. S5F, G). Higher abundance of this
population is therefore likely to drive the accelerated aggres-
siveness of Kdm5c-KD AML.
To summarize, Kdm5c-KD primarily leads to the deregulation of

differentiation-associated genes, tipping the balance towards a
more immature leukemia with increased proliferative capacity.

Direct and indirect downstream mediators facilitate the
Kdm5c-KD phenotype
Given the effect of Kdm5c-KD on bivalent promoters, we wanted
to assess putative functional effects of up-regulated genes on the
tumor growth phenotype of the KD. To this end, we were
specifically intrigued by the upregulation of the three bivalent
genes Chromobox 6 (Cbx6), Tribbles Pseudokinase 3 (Trib3) and
Ets Translocation Variant 4 (Etv4) genes, all of which were
upregulated after Kdm5c-KD (Fig. 5A–F, Supplementary Table 9).
Notably, ETV4 has numerous implications as an adverse prog-
nostic factor in multiple cancer types [37], including ccRCC, which
is prominently associated with KDM5C mutations [38].
To address the putative roles of Cbx6, Trib3, and Etv4 as

downstream effectors of the tumor promoting effect of Kdm5c KD,
we assessed the consequences of KD of either of them in
combination with Kdm5c KD. In accordance with the RNAseq data,
qRT-PCR revealed a slight Kdm5c KD-mediated upregulation of
each of the three genes, which was reversed by co-transduction
with either of their respective shRNAs (Fig. 5G–I). Strikingly, KD of
the three genes partially rescued the accelerated aggressiveness
mediated by Kdm5c KD, further suggesting that KDM5C exerts its
function via multiple downstream effectors (Fig. 5J–L).

Moreover, for Cbx6 and Trib3, these effects were accompanied
by rescue of the Kdm5c KD-dependent de-differentiation (Fig. 5M,
N). Such rescue was not detected after Etv4 KD suggesting that the
impact of Kdm5c KD on myeloid maturation is necessary, but not
sufficient to achieve the hyper-proliferative phenotype.
Among genes down-regulated following Kdm5c-KD, we detect

Fos and Jun, both of which encode well-established myeloid
transcription factors by associating with CEBPA or PU.1 to promote
monocytic differentiation (Fig. S6A, B). Although we have no
indication of this being a direct effect of KDM5C loss, their
downregulation may still contribute to the Kdm5c KD phenotype.
Indeed, we found that shRNA-mediated knockdown of either Fos
or Jun, partially mimicked the tumor advantage of Kdm5c-KD in
Lp30 AML (Fig. S6C–G). Conversely, over-expression of JUN
extended the median survival and partially rescued Kdm5c-KD
(Fig. S6H). Similar to Etv4-KD in the context of Kdm5C, down-
regulation of Jun expression (in a Kdm5c-unperturbed setting) did
not impact on the differentiation status of Lp30 AML cells
(Fig. S6I).
In conclusion, our data demonstrate that the impact of Kdm5c-

KD is mediated by an ensemble of direct and indirect downstream
targets, some of which affect the differentiation status of AML cells

Low KDM5C expression promotes poor outcome in human
AML
In hematopoietic malignancies, rare KDM5C mutations cluster in
and around the catalytic Jmj-, PHD1- and Arid domains (Fig. S7A
and Supplementary Table 10) and mutations in these regions
have previously been associated with reduced enzymatic
function or protein stability [17, 20, 39]. To functionally
determine the relevance of KDM5C deregulation in human
AML, we knocked down KDM5C in two human AML cell lines. In
support of the murine phenotypes, even limited KDM5C-KD was
associated with a 10–15% increase in growth rates in both HL-60
and NB-4 cell lines (Fig. 6A–D and S7B–D). Furthermore, we
subjected primary AML cells to CRISPR-mediated targeting of
the KDM5C and AAVS1 loci, with the latter serving as a “safe
harbor” control [40], and cultured cells in a 1:1 ratio. We could
only detect insertions and/or deletions (indels) in one out of four
AML samples. In this sample, the frequency of a 22 bp deletion
at KDM5C increased from <1% to around 7% at day 16 (Fig. S7E).
In contrast, AAVS1 edits only increased from 11% to 15%
indicating a specific growth advantage for KDM5C-targeted
primary AML cells.
We next assessed the clinical relevance of KDM5C expression in

AML using the BloodPool [41] and TCGA [42] datasets. Due to
marked sex-dependent differences in KDM5C levels (Fig. S7F),
resulting from its escape from X-inactivation [29], we analyzed
male and female data separately. Since low KDM5C expression was
not associated with any specific AML subtype (Fig. S7G), we
further investigated the prognostic value of KDM5C expression. In
female patients, KDM5C levels did not impact overall survival
(Fig. 6E and S8A), but when restricting the data to survival beyond
six months, KDM5C-low patients displayed a tendency towards
worse outcomes (Fig. 6F). In line with this, low KDM5C expression

Fig. 2 Kdm5c-KD leads to enrichment of H3K4me3 and displacement of H3K4me1. A, B Top panels: Average line plot of mean H3K4me1,
H3K4me3, H3K27me3, and H3K27ac read density (transcript per million, TPM) at promoters (A) and enhancers (B) in control vs Kdm5c-
knockdown (shKdm5c-I) Lp30 cells. Arrows indicate displacement of H3K4me1 and the increase of H3K4me3 levels. Lighter shaded ribbons
represent standard error of mean. Bottom panel: Heatmaps of mean H3K4me1, H3K4me3, H3K27me3, and H3K27ac signal at all promoters (A)
and enhancers (B) in Lp30 shControl and shKdm5c-I cells ranked based H3K4me3-peak widths (plotted 5’ to 3’ the individual TSS). Regions
with no detected H3K4me3 peaks have been randomly clustered. Small arrows indicate the center of TSS or enhancer peaks. KDM5C binding
in ESCs and NPCs have been included for comparison. C Volcano plot of differential peaks of H3K4me1 (left), H3K4me3 (center) and H3K27ac
(right) in Kdm5c-KD (shKdm5c-I) vs control Lp30 cells. Quantified from biological duplicate ChIP-seqs. D Volcano plot of global differentially
expressed ratios of histone-modifications in Kdm5c-KD (shKdm5c-I) vs control Lp30 cells determined by mass spectrometry. E, F Ratios of post-
translational modifications (PTMs) at H3K4 (D) and K27 (E) of two Histone 3 variants (H3.1 and H3.3.) in Kdm5c-KD (shKdm5c-I) vs control Lp30
cells. P-values were calculated using two-tailed T-tests (not adjusted for multiple testing).
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significantly predicted poor disease-free survival beyond six
months (Fig. 6G, H) but did not impact on overall disease-free
survival (Fig. S8B).
For male patients, stratification based on KDM5C expression

alone did not influence neither overall nor disease-free survival
(Fig. S8C–F). Instead, if we stratified based on the summed
expression of KDM5C and the Y-linked KDM5D, KDM5C/KDM5D-low
patients displayed a trend towards poor disease-free survival and

had a significantly poorer overall survival (Fig. S8C–F). These
findings suggest that KDM5C expression alone can predict
outcome in females, while only the combined KDM5C/KDM5D
levels are predictive in male patients. Moreover, KDM5C mutations
in hematological neoplasms are more frequently found in female
patients (10/327 women, 2/443 men; Fisher’s exact test p= 0.006,
COSMIC [43]), suggesting a female bias contrasting a previous
pan-cancer report [44].
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Finally, we assessed whether the top- and bottom-quantiles of
KDM5C expression in female patients were associated with specific
mutations (Fig. 6I and S8G). Mutations in PML-RARA, which are
associated with good prognosis [45], were significantly enriched in
the KDM5C-high (top 25%) group and a similar trend was seen for
IDH1 mutations. DNMT3A and K-RAS mutations, associated with
poor prognosis [46], tended to be more common in the KDM5C-
low (bottom 25%) group (Fig. 6I). The low number of CEBPA-
mutant samples (4 in total) in the cohort did not allow us to
associate this genotype with KDM5C expression (Fig. S8G).
In conclusion, low KDM5C expression was associated with

increased growth rates of human AML cell lines and predicts poor
disease-free survival of in particular female AML patients.
Additionally, high KDM5C expression correlates with mutations
associated with good prognosis.

DISCUSSION
Epigenetic factors are frequently mutated in cancer and their
perturbation can create a permissive environment for malignant
transformation [2]. Aiming to identify novel epigenetic regula-
tors in AML, we performed an shRNA-screen using a murine
model of CEBPA mutant AML and identified KDM5C as a novel
tumor suppressor. By shRNA-mediated knockdown of Kdm5c/
KDM5C, we demonstrated tumor-suppressive properties in
murine and human AML models, whereas we observed no
advantageous effects in normal murine hematopoietic cells.
Supporting a tumor suppressive function, KDM5C mutations
have recently been reported in human hematological neo-
plasms, including AML [25–27]. However, the functional
importance of KDM5C in hematopoietic malignancies was
unknown.
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Here, we found that long-term disease-free survival could be
stratified based on KDM5C-expression, particularly in female
patients. Although the regulation of KDM5C expression is poorly
understood, its deregulation in AML is likely an indirect effect of
other AML related mutations. Moreover, the overrepresentation of

KDM5C mutations in female patients additionally supports KDM5C
as a female-biased tumor suppressor. This sex bias is likely due to
functional compensation by the Y-linked paralog, KDM5D, in males.
Functionally, we found that shRNA-mediated downregulation

of KDM5C in Lp30 AML was associated with a de-differentiation
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phenotype. This was supported by an increased colony forming-
activity, an increased expression of immature genes, and an
immature immunophenotype following Kdm5c-KD.
We demonstrated that the tumor suppressive is mediated by

both positively and negatively acting downstream effectors,
including CBX6, TRIB3, ETV4 and FOS/JUN, where the first two
also affect the differentiation status of Lp30 AML. Although the
opposite impact of these effectors on leukemic aggressiveness
appear mechanistically distinct, they might still be coupled.
Indeed, it has been reported that ETV4 drives expression of the
AP-1 transcription factor FOS Like1 (FOSL1) in ccRCC cells and that
FOSL1 inhibits adipocyte differentiation by directly inhibiting
Cebpa transcription [38, 47]. Concordantly, RNA-seq data revealed
robust induction of Fosl1 as well as slightly reduced Cebpa
expression in response to Kdm5c KD (Supplementary Table 9).
Although beyond the scope of this work, it is tempting to
speculate that FOSL1-mediated CEBPA depletion and reduced
CEBPA-FOS/JUN interaction work in concert to promote tumor
aggressiveness.
Molecularly, we found that in the context of Cebpamutant AML,

KDM5C promoted the removal of H3K4me3 particularly at
promoters of lowly expressed bivalent genes. These genes are
down-regulated during myeloid differentiation but, consistent
with the increase of H3K4me3 at their promoters, became up-
regulated following Kdm5c-KD. Thus, we hypothesize that their
upregulation is directly driving the de-differentiation phenotype
(summarized in Fig. 6J). Meanwhile, Kdm5c-KD-mediated
H3K4me3-increase at highly expressed genes did not affect
transcription, suggesting that bivalent genes are particularly
sensitive to transcription-promoting signals.
While loss of KDM5C has previously been reported to increase

enhancer activity [35], we did not observe a correlation
between H3K4-methylation changes and enhancer activity.
However, downregulated genes were associated with a
higher number of nearby enhancers, which could suggest a
higher enhancer dependency compared with neutral and
upregulated genes.
The recruitment of KDM5 family members and their functional

redundancy is poorly understood. However, each KDM5 member
has individual cancer implications [23, 48–51] and different
binding patterns have been reported for KDM5B and KDM5C
[52]. KDM5B has previously been reported to negatively affect
leukemic stem cell maintenance specifically in MLL-rearranged
AML [53]. In contrast, our data demonstrate a broader tumor
suppressive function of KDM5C suggesting significant redun-
dancy between KDM5 family members. In summary, we have
uncovered KDM5C as a novel female-biased tumor suppressor in
AML, which sustains leukemic differentiation via removal of
H3K4me3 methylation at promoters of bivalently marked
immature genes.
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