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TO THE EDITOR:
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) com-
prises multiple genetic subtypes with strong prognostic associa-
tions. The outcome of patients with high-risk genetics improves
with risk stratification or targeted therapy [1, 2]. Therefore, it is
important to assess the prognostic impact of newly identified
genetic abnormalities to ensure appropriate clinical intervention.
Recent studies have identified MEF2D rearrangements (MEF2D-r)
in 2–3% cases and initial observations, based on small numbers of
cases, indicate that patients have a poor outcome [3–7]. MEF2D-r
are characterized by fusion of an N-terminal region of MEF2D to
the C-terminal region of multiple, different partner genes [3–8]. As
there are limited data available concerning the prognostic impact
of MEF2D-r in ALL, we conducted an international study via the
Ponto di Legno Childhood Leukemia Working Group to describe
the clinical characteristics and outcome of patients with BCP-ALL
and MEF2D-r.
Demographic, clinical, treatment, genetics and outcome data

were collected from 14 regional study groups (Supplementary
Table 1). Patients were diagnosed between 1987 and 2018 and
MEF2D-r were detected retrospectively, using a range of
techniques (Supplementary Table 2). The majority of cases [97/
107(91%)] were identified by screening diagnostic samples from
representative cohorts of B-other-ALL (i.e. patients lacking an
established genetic abnormality). Additional cases were identified

among relapse patients and/or in relapse samples. These cases
were excluded from the survival analysis (n= 10). We considered
three endpoints: relapse rate (RR), event-free survival (EFS) and
overall survival (OS), using the Kaplan-Meier method, log-rank test
and Cox regression models, retrospectively, as previously
described [9]. All rates are quoted at 5 years.
Among 107 MEF2D-r patients, there was female predominance

(66:41) with a median age of 10.67 years (Table 1). A quarter of
patients had diagnostic peripheral blood white blood cell (WBC)
counts >50,000/μl, which, coupled with the older age, resulted in
70% (60/98) being classified as National Cancer Institute (NCI) high
risk. Data on antigen expression were available for 91 of the 107
cases. Different panels were used so the amount of data was
variable for each antigen (Supplementary Table 3). Cases
distributed evenly across EGIL groups: pro-B, pre-B, late pre-B.
HLA-DR, cytoplasmic immunoglobulin μ chain, CD45, CD22 and
CD19 were commonly expressed (>80% tested cases). CD10 and
CD5 were expressed in 65% and 56% tested cases, respectively.
None of the other tested antigens (CD2, CD3, CD7, CD13, CD20,
CD33, CD34 and CD66c) were expressed in >20% tested cases.
Unfortunately, data were unavailable for CD38 expression, which
has reported to be a feature of MEF2D-r [3–8]. Although we did
not include a comparator cohort, we confirmed the distinct
features associated with MEF2D-r reported in smaller studies [3–8].
Namely female sex, older age, common expression of cytoplasmic
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Table 1. Demographic and outcome features of patients with BCP-ALL and a MEF2D rearrangement stratified by partner gene.

Total BCL9 HNRNPUL1 p valuea BCL9
v HNRNPUL1

Otherb p valuea BCL9 v
HNRNPUL1
v other

Missing

Total, n (%) 107 (100) 37 (54) 22 (32) – 10 (14) 38

Sex, n (%)

Male 41 (38) 13 (35) 11 (50) 0.3 2 (20) 0.2 15 (39)

Female 66 (62) 24 (65) 11 (50) 8 (80) 23 (61)

Age at initial
diagnosis(years)

Median 10.67 9.48 9.09 8.91 12.00

1–9 40 (42) 16 (53) 11 (52) 0.2 5 (50) 0.2 8 (23)

10–14 41 (43) 8 (27) 9 (43) 5 (50) 19 (54)

15–18 15 (16) 6 (20) 1 (5) 0 (0) 8 (23)

Unknown/Missing 11 7 1 0 3

WBC Count (106/L) at
diagnosis

<50,000 78 (74) 26 (72) 20 (91) 0.09 5 (50) 0.04 27 (71)

>50,000 28 (26) 10 (28) 2 (9) 5 (50) 11 (29)

Unknown/Missing 1 1 0 0 0

NCI risk group at diagnosis

Standard risk 29 (30) 11 (35) 10 (48) 0.4 3 (30) 0.6 5 (14)

High risk 69 (70) 20 (65) 11 (52) 7 (70) 31 (86)

Missing 9 6 1 0 2

CNS disease at
diagnosis (CNS3)

Yes 4 (4) 0 (0) 1 (6) 0.4 1 (11) 0.3 2 (6)

No 85 (96) 27 (100) 17 (94) 8 (89) 33 (94)

Unknown/Missing 18 10 4 1 3

Year of Diagnosis

1992–2007 52 (49) 15 (41) 9 (41) 0.9 6 (60) 0.5 22 (58)

2008–2018 55 (51) 22 (59) 13 (59) 4 (40) 16 (42)

Race

Asian 29 (45) 14 (61) 12 (75) 0.4 3 (60) 0.6 0 (0)

White 28 (43) 7 (30) 2 (13) 2 (40) 17 (81)

Other 8 (12) 2 (9) 2 (13) 0 (0) 4 (19)

Unknown/Missing 42 14 6 5 17

Treatment risk groups

Non-high risk 60 (56) 23 (62) 15 (68) 0.4 8 (80) 0.6 14

High risk 47 (44) 14 (38) 7 (32) 2 (20) 24

Minimal residual disease at
end of induction

Positive (≥0.01%) 2 (7) 1 (9) 0 (0) 0.4 1 (25) 0.4 0 (0)

Negative (<0.01%) 26 (93) 10 (91) 6 (100) 3 (75) 7 (100)

Unknown/Missing 79 26 16 6 31

Stem cell transplant
Received

Yes 2 (3) 2 (6) 0 (0) 0.2 0 (0) 0.4 0 (0)

No 73 (97) 31 (4) 22 (100) 8 (100) 38 (100)

Unknown/missing 32 3 0 2 26

Outcome analysis

Cases includedc 95 (100) 33 (55) 18 (30) – 9 (15) 35

Median followup (years) 6.73 6.16 6.75 0.7 5.79 0.6/0.7d 6.97

5 years survival, % (95% CI)

Relapse rate 24% (16–35) 32%
(18–53)

6% (1–37) 0.07 13%
(2–61)

0.2 29%
(16–48)
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immunoglobulin μ chain and CD5, and less frequent expression of
CD10.
Information on the fusion partner gene was available for 69/107

(64%) patients. MEF2D::BCL9 and MEF2D::HNRNPUL1 were the most
common fusions, detected in 37 and 22 cases, respectively;
together accounting for 85% cases. Other partner genes were
identified as follows: FOXJ2 (n= 4, 6%), CSF1R (n= 2, 3%), and
single cases of HNRNPH1, PYGO2, BCL9L, and SS18. The partner
gene was not determined in the remaining 38 cases due to lack of
suitable material or unavailability of a relevant technique. There
were no statistical differences in the distribution of age, NCI risk
group, ethnicity, or leukocyte count according to partner gene
(Table 1). Due to lack of data, we are unable to confirm a recent
observation, showing that black patients had a higher incidence of
MEF2D-r [10]. The distinctive antigen profile associated with
MEF2D-r (cytoplasmic immunoglobulin μ chain and CD5) was
consistent in cases with different partner genes. However, patients
with MEF2D::HNRNPUL1 were significantly more likely to express
CD10 compared to patients with MEF2D::BCL9 [18/20(90%) v 17/
32(53%), p= 0.007) and be late pre-B [11/18(61%) v 8/31(26%),
p= 0.016] (Supplementary Table 3).
Approximately 60% cases were tested by MLPA/SNP arrays for

deletions affecting IKZF1, PAX5, CDKN2A/B, and ETV6, whilst a
smaller number were screened for mutations in NRAS/KRAS, FLT3,
NOTCH1, FBXW7 and PHF6 (Supplementary Table 4). The most
common secondary abnormality was CDKN2A/B deletion, occur-
ring in 48/68 (71%) cases. PAX5, also located to 9p, was co-deleted
in 12 cases. IKZF1 deletions and NRAS/KRAS mutations were rare,
occurring in ≤10% cases. As previously noted, the frequency of
PHF6 mutations, usually associated with T-ALL, was high (25%) [7].
There was little evidence that the frequency of secondary copy
number alterations or mutations varied in relation to partner gene.
However, 0/18 cases with MEF2D::HNRNPUL1 carried a PAX5
deletion. The spectrum of secondary alterations in MEF2D-r

patients was not typical of B-other-ALL. The proportion of patients
with CDKN2A/B deletions was much higher than expected, whilst
the frequency of IKZF1 deletions was lower [11].
Outcome data for 95 patients with MEF2D-r was available for

analysis (Table 1). All patients achieved a complete hematological
remission and 26/28 (93%) cases tested were MRD negative
(<0.01%) at the end of remission induction therapy. Despite this
good early response, 39/95 (44%) cases were treated on the high-
risk protocols of each study group, likely reflecting the observation
that most patients were NCI high-risk. Very few patients (2 of 75,
3%) received a hematopoietic stem cell transplant, consistent with
90% cases being MRD negative at the end of induction. After a
median follow-up time of 6.73 years, the EFS rate was 74%
(63%–82%) with corresponding relapse and survival rates (Table 1).
The majority of relapses (79%) involved bone marrow. There was
no significant difference in EFS by NCI risk status, treatment period
(pre- and post- 2008) or race (white vs Asian) (Fig. 1, Supplemen-
tary Table 5). Our cohort was incomplete for data on race in terms
of both classification and numbers of cases, so only very large
differences in outcome would be detectable.
Patients with MEF2D::HRNPUL1 had an EFS of 94% (95% CI

63–99), which was numerically, but not statistically significantly,
higher than the EFS for patients with MEF2D::BCL9 − 65% (95%
45–80) (log rank test p= 0.05). A univariate Cox model comparing
the risk of an event among MEF2D::HRNPUL1 cases with
MEF2D::BCL9 cases revealed a hazard ratio of 0.16 (95% CI
0.02–1.28), p= 0.09 (Table 1). The trend towards a better outcome
for patients with MEF2D::HRNPUL1 correlated with the high
frequency CD10 expression and proportion of late pre-B cases in
this subtype. Both factors were also linked with better outcome:
CD10 expression (yes v no) EFS 83% (95% 64–93) v 57% (27–78),
log-rank p= 0.04; late pre-B v pro-B/pre-B 94% (63–99) v 63%
(41–78) log-rank p= 0.03. Nine of 33 patients with MEF2D::BCL9
relapsed with a median time to relapse of 20 months. Only 1/18

Table 1. continued

Total BCL9 HNRNPUL1 p valuea BCL9
v HNRNPUL1

Otherb p valuea BCL9 v
HNRNPUL1
v other

Missing

Event-free 74% (63–82) 65%
(45–80)

94% (63–99) 0.05 88%
(39–98)

0.1 68%
(49–82)

Overall 81% (71–88) 76%
(55–88)

94% (63–99) 0.2 88%
(39–98)

0.3 78%
(59–89)

Site of relapse

Bone marrow (BM) 13 (68) 7 (78) 1 (100) 0.9 1 (50) 0.9 4

BM+ CNS 2 (11) 1 (11) 0 (0) 1 (50) 1

CNS 3 (16) 1 (11) 0 (0) 0 (0) 2

Other 1 (5) 0 (0) 0 (0) 0 (0) 1

Missing 2 0 0 1 1

Univariate Cox Model
(hazard ratio (95%
confidence interval),
p value)

Relapse – 1 0.18
(0.02–1.43)

0.1 – –

Event – 1 0.16
(0.02–1.28)

0.09 – –

Death – 1 0.24
(0.03–1.97)

0.2 – –

aP values are from Chi-squared test, t-test, log rank test or Cox regression model as appropriate.
bThe other group includes 4 cases of FOXJ2 and 1 case each of BCL9L, HNRNPH1, PYGO2, SS18; plus two cases of CSFR1.
cTwelve patients were excluded because they had missing data (n= 2), had been selected for screening because they had relapsed or had refractory disease
(n= 7) or the fusion had only be detected at relapse (n= 3).
dBCL9 v Other and HNRNPUL1 v Other.
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patients with MEF2D::HRNPUL1 relapsed. CD5 expression was
highest among patients with MEF2D::BCL9 (64%) but there was no
difference in outcome between patients expressing and not
expressing CD5: EFS 64% (95% 36–82) v 79% (47–93), log rank test
p= 0.3. Our ability to examine the prognostic effect of secondary
abnormalities was limited both by the number of cases tested, as
well as the rarity of recurrent abnormalities. However, there was
no significant prognostic effect of the presence of either CDKN2A/
B or PAX5 deletions (log rank p values >0.2 for all three endpoints).
Previous studies, based on small numbers of cases, have

reported the therapeutic outcome of MEF2D-r BCP-ALL to be
unfavorable. For example, analysis of NCI-high risk children
enrolled on AALL0232 showed that 20 MEF2D-r cases belonged
to the group with EFS of 72%, which was comparable to BCR::ABL1
(60%), KMT2A-r (78%) and Ph-like (60%), but lower than other BCP-
ALL cases (87%) [6]. In the TCCSG L04‑16 Study, the EFS and OS
rates for BCP-ALL patients was 80% and 92%, respectively, but
50% and 56% respectively for MEF2D-r cases [7]. The major
strength of this study is that it collected a large, well-annotated
cohort of MEF2D-r cases. Although the patients were not uniformly
treated, they did not exhibit significant outcome heterogeneity by
era or NCI risk status. In this study, 24% patients had relapsed and
the EFS was 74%, indicating the therapeutic outcome of MEF2D-r,
whilst not extremely poor, was lower than expected for patients
with intermediate risk genetics. In this study, patients with
MEF2D::BCL9 had an EFS of 65%, close to the rates reported in
AALL0232 and TCCSG L04-16 studies that were predominantly
based on MEF2D::BCL9 cases. In contrast, only 6% (n= 1) of
MEF2D::HNRNPUL1 cases in this study had relapsed within 5 years
and the EFS was 94%. There was no difference in the distribution
or outcome of MEF2D::HNRNPUL1 or MEF2D::BCL9 patients by NCI

risk status. Although a direct comparison of the outcome of
patients with MEF2D::HNRNPUL1 or MEF2D::BCL9 did not reach
statistical significance, the large numerical differences in relapse
and EFS do indicate outcome heterogeneity according to
partner gene.
In conclusion, this retrospective multi-center study confirmed

that MEF2D fusions are associated with female sex, older age and
atypical immunophenotype. The most common fusion partners
were BCL9 and HNRNPUL1, accounting for >80% cases. We have
confirmed previous studies that suggest a high risk of relapse for
patients with MEF2D::BCL9 fusions, but we could not confirm that
this poor outcome extended to patients with otherMEF2D partners.

DATA AVAILABILITY
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