Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CHRONIC MYELOGENOUS LEUKEMIA

Identification of key microRNAs as predictive biomarkers of Nilotinib response in chronic myeloid leukemia: a sub-analysis of the ENESTxtnd clinical trial

Abstract

Despite the effectiveness of tyrosine kinase inhibitors (TKIs) against chronic myeloid leukemia (CML), they are not usually curative as some patients develop drug-resistance or are at risk of disease relapse when treatment is discontinued. Studies have demonstrated that primitive CML cells display unique miRNA profiles in response to TKI treatment. However, the utility of miRNAs in predicting treatment response is not yet conclusive. Here, we analyzed differentially expressed miRNAs in CD34+ CML cells pre- and post-nilotinib (NL) therapy from 58 patients enrolled in the Canadian sub-analysis of the ENESTxtnd phase IIIb clinical trial which correlated with sensitivity of CD34+ cells to NL treatment in in vitro colony-forming cell (CFC) assays. We performed Cox Proportional Hazard (CoxPH) analysis and applied machine learning algorithms to generate multivariate miRNA panels which can predict NL response at treatment-naïve or post-treatment time points. We demonstrated that a combination of miR-145 and miR-708 are effective predictors of NL response in treatment-naïve patients whereas miR-150 and miR-185 were significant classifiers at 1-month and 3-month post-NL therapy. Interestingly, incorporation of NL-CFC output in these panels enhanced predictive performance. Thus, this novel predictive model may be developed into a prognostic tool for use in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the effect of TKIs in vitro on CD34+ cells from NL-responders and nonresponders.
Fig. 2: Study design and univariate analysis of 47 differentially expressed miRNAs between NL-responders and nonresponders.
Fig. 3: Multivariate analysis of miRNAs associated with NL-nonresponse in treatment naïve patients (BL).
Fig. 4: Multivariate analysis of miRNAs associated with NL-nonresponse in 1-Month post-treatment patients (M1).
Fig. 5: Multivariate analysis of miRNAs associated with NL-nonresponse in 3-month post-treatment patients (M3).

Similar content being viewed by others

References

  1. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973;243:290–3.

    Article  CAS  PubMed  Google Scholar 

  2. Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood 2017;129:1595–606.

    Article  CAS  PubMed  Google Scholar 

  3. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl J Med. 2006;355:2408–17.

    Article  CAS  PubMed  Google Scholar 

  4. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.

    Article  CAS  PubMed  Google Scholar 

  5. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005;7:129–41.

    Article  CAS  PubMed  Google Scholar 

  6. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004;305:399–401.

    Article  CAS  PubMed  Google Scholar 

  7. Ross DM, Hughes TP. Treatment-free remission in patients with chronic myeloid leukaemia. Nat Rev Clin Oncol. 2020;17:493–503.

    Article  PubMed  Google Scholar 

  8. Shah NP, Garcia-Gutierrez V, Jimenez-Velasco A, Larson S, Saussele S, Rea D, et al. Dasatinib discontinuation in patients with chronic-phase chronic myeloid leukemia and stable deep molecular response: the DASFREE study. Leuk Lymphoma. 2020;61:650–9.

    Article  CAS  PubMed  Google Scholar 

  9. Rea D, Nicolini FE, Tulliez M, Guilhot F, Guilhot J, Guerci-Bresler A, et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood 2017;129:846–54.

    Article  CAS  PubMed  Google Scholar 

  10. Caldemeyer L, Akard LP. Rationale and motivating factors for treatment-free remission in chronic myeloid leukemia. Leuk Lymphoma. 2016;57:2739–51.

    Article  CAS  PubMed  Google Scholar 

  11. Kantarjian HM, Hughes TP, Larson RA, Kim DW, Issaragrisil S, le Coutre P, et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia 2021;35:440–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hughes TP, Munhoz E, Aurelio Salvino M, Ong TC, Elhaddad A, Shortt J, et al. Nilotinib dose-optimization in newly diagnosed chronic myeloid leukaemia in chronic phase: final results from ENESTxtnd. Br J Haematol. 2017;179:219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer. 2020;20:158–73.

    Article  CAS  PubMed  Google Scholar 

  14. Quintas-Cardama A, Kantarjian HM, Cortes JE. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control. 2009;16:122–31.

    Article  PubMed  Google Scholar 

  15. Jabbour EJ, Cortes JE, Kantarjian HM. Resistance to tyrosine kinase inhibition therapy for chronic myelogenous leukemia: a clinical perspective and emerging treatment options. Clin Lymphoma Myeloma Leuk. 2013;13:515–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rousselot P, Charbonnier A, Cony-Makhoul P, Agape P, Nicolini FE, Varet B, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol. 2014;32:424–30.

    Article  CAS  PubMed  Google Scholar 

  17. Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11:1029–35.

    Article  CAS  PubMed  Google Scholar 

  18. Warfvinge R, Geironson L, Sommarin MNE, Lang S, Karlsson C, Roschupkina T, et al. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. Blood 2017;129:2384–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giustacchini A, Thongjuea S, Barkas N, Woll PS, Povinelli BJ, Booth CAG, et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med. 2017;23:692–702.

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Li S. Molecular signatures of chronic myeloid leukemia stem cells. Biomark Res. 2013;1:21.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Krishnan V, Kim DDH, Hughes TP, Branford S, Ong ST. Integrating genetic and epigenetic factors in chronic myeloid leukemia risk assessment: toward gene expression-based biomarkers. Haematologica 2022;107:358–70.

    Article  CAS  PubMed  Google Scholar 

  22. Clark RE, Apperley JF, Copland M, Cicconi S. Additional chromosomal abnormalities at chronic myeloid leukemia diagnosis predict an increased risk of progression. Blood Adv. 2021;5:1102–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song HY, Noh H, Choi SY, Lee SE, Kim SH, Kee KM, et al. BCR-ABL1 transcript levels at 4 weeks have prognostic significance for time-specific responses and for predicting survival in chronic-phase chronic myeloid leukemia patients treated with various tyrosine kinase inhibitors. Cancer Med. 2018;7:5107–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glauche I, Kuhn M, Baldow C, Schulze P, Rothe T, Liebscher H, et al. Quantitative prediction of long-term molecular response in TKI-treated CML - Lessons from an imatinib versus dasatinib comparison. Sci Rep. 2018;8:12330.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jiang X, Forrest D, Nicolini F, Turhan A, Guilhot J, Yip C, et al. Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate. Blood 2010;116:2112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kok CH, Yeung DT, Lu L, Watkins DB, Leclercq TM, Dang P, et al. Gene expression signature that predicts early molecular response failure in chronic-phase CML patients on frontline imatinib. Blood Adv. 2019;3:1610–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics. 2019;11:25.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.

    Article  PubMed  PubMed Central  Google Scholar 

  29. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018;9:402.

    Article  Google Scholar 

  30. Bissels U, Bosio A, Wagner W. MicroRNAs are shaping the hematopoietic landscape. Haematologica 2012;97:160–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Litwinska Z, Machalinski B. miRNAs in chronic myeloid leukemia: small molecules, essential function. Leuk Lymphoma. 2017;58:1297–305.

    Article  CAS  PubMed  Google Scholar 

  32. Alves R, Goncalves AC, Jorge J, Marques G, Luis D, Ribeiro AB, et al. MicroRNA signature refine response prediction in CML. Sci Rep. 2019;9:9666.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ciccone M, Calin GA. MicroRNAs in myeloid hematological malignancies. Curr Genomics. 2015;16:336–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Machova Polakova K, Lopotova T, Klamova H, Burda P, Trneny M, Stopka T, et al. Expression patterns of microRNAs associated with CML phases and their disease related targets. Mol Cancer. 2011;10:41.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 2007;109:4399–405.

    Article  CAS  PubMed  Google Scholar 

  36. Ferreira AF, Moura LG, Tojal I, Ambrosio L, Pinto-Simoes B, Hamerschlak N, et al. ApoptomiRs expression modulated by BCR-ABL is linked to CML progression and imatinib resistance. Blood Cells Mol Dis. 2014;53:47–55.

    Article  CAS  PubMed  Google Scholar 

  37. San Jose-Eneriz E, Roman-Gomez J, Jimenez-Velasco A, Garate L, Martin V, Cordeu L, et al. MicroRNA expression profiling in imatinib-resistant chronic myeloid leukemia patients without clinically significant ABL1-mutations. Mol Cancer. 2009;8:69.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Flamant S, Ritchie W, Guilhot J, Holst J, Bonnet ML, Chomel JC, et al. Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica 2010;95:1325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin H, Rothe K, Chen M, Wu A, Babaian A, Yen R, et al. The miR-185/PAK6 axis predicts therapy response and regulates survival of drug-resistant leukemic stem cells in CML. Blood 2020;136:596–609.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hochhaus A, Saglio G, Hughes TP, Larson RA, Kim DW, Issaragrisil S, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016;30:1044–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020;34:966–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hothorn T, Lausen B. On the exact distribution of maximally selected rank statistics. Computational Stat Data Anal. 2003;43:121–37.

    Article  Google Scholar 

  43. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121:396–409.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang X, Saw KM, Eaves A, Eaves C. Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst. 2007;99:680–93.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007;21:926–35.

    Article  CAS  PubMed  Google Scholar 

  46. Turhan AG, Hugues P, Sorel N, Desterke C, Bourhis JH, Bennaceur-Griscelli A, et al. Evidence of BCR-ABL1-positive progenitor spread in blood during molecular recurrence after TKI discontinuation in chronic myeloid leukemia (CML). Leuk Lymphoma. 2020;61:1719–23.

    Article  CAS  PubMed  Google Scholar 

  47. Abraham SA, Hopcroft LE, Carrick E, Drotar ME, Dunn K, Williamson AJ, et al. Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature 2016;534:341–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl J Med. 2004;351:657–67.

    Article  CAS  PubMed  Google Scholar 

  49. Xu WX, Liu Z, Deng F, Wang DD, Li XW, Tian T, et al. MiR-145: a potential biomarker of cancer migration and invasion. Am J Transl Res. 2019;11:6739–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu W, Hua Y, Deng F, Wang D, Wu Y, Zhang W, et al. MiR-145 in cancer therapy resistance and sensitivity: A comprehensive review. Cancer Sci. 2020;111:3122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Manvati S, Mangalhara KC, Kalaiarasan P, Chopra R, Agarwal G, Kumar R, et al. miR-145 supports cancer cell survival and shows association with DDR genes, methylation pattern, and epithelial to mesenchymal transition. Cancer Cell Int. 2019;19:230.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Monteleone NJ, Lutz CS. miR-708-5p: a microRNA with emerging roles in cancer. Oncotarget 2017;8:71292–316.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Srutova K, Curik N, Burda P, Savvulidi F, Silvestri G, Trotta R, et al. BCR-ABL1 mediated miR-150 downregulation through MYC contributed to myeloid differentiation block and drug resistance in chronic myeloid leukemia. Haematologica 2018;103:2016–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Habib EM, Nosiar NA, Eid MA, Taha AM, Sherief DE, Hassan AE, et al. MiR-150 expression in chronic myeloid leukemia: relation to imatinib response. Lab Med. 2022;53:58–64.

    Article  PubMed  Google Scholar 

  55. Di Stefano C, Mirone G, Perna S, Marfe G. The roles of microRNAs in the pathogenesis and drug resistance of chronic myelogenous leukemia (Review). Oncol Rep. 2016;35:614–24.

    Article  PubMed  Google Scholar 

  56. Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of MicroRNAs in cancer. Cancer Res. 2016;76:3666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Stem Cell Assay Laboratory staff for processing patient samples, Josephine Leung and Kyi Min Saw for excellent technical assistance, members of the Leukemia/Bone Marrow Transplant Program of British Columbia and the Hematology Cell Bank of British Columbia for patient samples, the Terry Fox Laboratory FACS Facility for cell sorting and STEMCELL Technologies for culture reagents.

Funding

This work was supported by the Canadian Cancer Society, the Leukemia & Lymphoma Society of Canada, the Canadian Institutes of Health Research (CIHR) and the Collings Stevens Chronic Leukemia Research Fund (XJ). RY received a Four-Year Fellowship from UBC and a CIHR Frederick Banting and Charles Best Canada Graduate Scholarship; SG is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation—project 446251518), Michael Smith Health Research BC and the Lotte & John Hecht Memorial Foundation (project RT-2020-0578); AW and JS received MITACS Accelerate Fellowships; KR was a MITACS Elevate Postdoctoral Fellow.

Author information

Authors and Affiliations

Authors

Contributions

DLF, CE and XJ developed the concept and designed the experiments; RY performed data analyses and statistical and bioinformatics analyses; SG provided expertise in complex statistical and data analyses and insightful discussions; HL, HN, JS, KR, AW performed q-RT-PCR, CFC experiments and data analyses; DLF provided the clinical data and insightful discussions; AW, RY, SG, JS, and XJ wrote the manuscript and all authors commented on it.

Corresponding author

Correspondence to Xiaoyan Jiang.

Ethics declarations

Competing interests

Research funding: Novartis Canada (DLF, CE, and XJ). Other authors declare no conflicts of interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yen, R., Grasedieck, S., Wu, A. et al. Identification of key microRNAs as predictive biomarkers of Nilotinib response in chronic myeloid leukemia: a sub-analysis of the ENESTxtnd clinical trial. Leukemia 36, 2443–2452 (2022). https://doi.org/10.1038/s41375-022-01680-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01680-4

This article is cited by

Search

Quick links