Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IMMUNOTHERAPY

Single-cell ATAC-seq maps the comprehensive and dynamic chromatin accessibility landscape of CAR-T cell dysfunction

Abstract

Chimeric antigen receptor T cells (CAR-T) therapy has achieved remarkable therapeutic success in treating a variety of hematopoietic malignancies. However, the high relapse rate and poor in vivo persistence, partially caused by CAR-T cell exhaustion, are still important barriers against CAR-T therapy. It remains largely elusive on the mechanisms of CAR-T exhaustion and how to attenuate exhaustion to achieve better therapeutic efficacy. In this study, we initially observed that CAR-T cells showed rapid differentiation and increased exhaustion after co-culture with tumor cells in vitro, and then performed single-cell ATAC-seq to depict the comprehensive and dynamic landscape of chromatin accessibility of CAR-T cells during tumor cell stimulation. Analyses of differential chromatin accessible regions and motif accessibility revealed that TFs were distinct in each cell type and reconstituted a coordinated regulatory network to drive CAR-T exhaustion. Furthermore, we performed scATAC-seq in patient-derived CAR-T cells and identified BATF and IRF4 as pivotal regulators in CAR-T cell exhaustion. Finally, knockdown of BATF or IRF4 enhanced the killing ability, inhibited exhaustion, and prolonged the persistence of CAR-T cells in vivo. Together, our study unraveled the epigenetic regulatory mechanisms of CAR-T exhaustion and provided new insights into CAR-T engineering to achieve better clinical treatment benefits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The dynamic changes of CAR-T cell proliferation, differentiation, activation, and exhaustion after tumor cell stimulation.
Fig. 2: Chromatin accessibility landscape of CAR-T cells after tumor cells stimulation in vitro.
Fig. 3: The dynamic changes of chromatin accessibility and TF activities during CAR-T cells differentiation.
Fig. 4: The coordinated regulatory TFs network during CAR-T cell exhaustion.
Fig. 5: Chromatin accessibility landscape of CAR-T cells in multiple myeloma patients.
Fig. 6: CAR-T cells with BATF or IRF4 knockdown showed increased effector functions, persistence, and enhanced antitumor potency.

Similar content being viewed by others

References

  1. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379:64–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21:581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lynn RC, Weber EW, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, et al. Defining ‘T cell exhaustion’. Nat Rev Immunol. 2019;19:665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188:2205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Finney OC, Brakke HM, Rawlings-Rhea S, Hicks R, Doolittle D, Lopez M, et al. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J Clin Investig. 2019;129:2123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Henning AN, Roychoudhuri R, Restifo NP. Epigenetic control of CD8(+) T cell differentiation. Nat Rev Immunol. 2018;18:340–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gennert DG, Lynn RC, Granja JM, Weber EW, Mumbach MR, Zhao Y, et al. Dynamic chromatin regulatory landscape of human CAR T cell exhaustion. Proc Natl Acad Sci USA. 2021;30:e2104758118.

    Article  Google Scholar 

  9. Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354:1165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, et al. Transcription factor IRF4 Promotes CD8(+) T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity. 2017;47:1129–41.e1125.

    Article  CAS  PubMed  Google Scholar 

  11. Liu X, Wang Y, Lu H, Li J, Yan X, Xiao M, et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature. 2019;567:525–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, et al. TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion. Nature. 2019;571:211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Satpathy AT, Granja JM, Yost KE, Qi Y, Meschi F, McDermott GP, et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat Biotechnol. 2019;37:925–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sheih A, Voillet V, Hanafi LA, DeBerg HA, Yajima M, Hawkins R, et al. Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. Nat Commun. 2020;11:219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng Q, Han G, Puebla-Osorio N, Ma MCJ, Strati P, Chasen B, et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med. 2020;26:1878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang W, Fasolino M, Cattau B, Goldman N, Kong W, Frederick MA, et al. Joint profiling of chromatin accessibility and CAR-T integration site analysis at population and single-cell levels. Proc Natl Acad Sci USA. 2020;117:5442–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen GM, Chen C, Das RK, Gao P, Chen CH, Bandyopadhyay S, et al. Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy. Cancer Discov. 2021;11:2186–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang H, Hu Y, Shao M, Teng X, Jiang P, Wang X, et al. Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion. J Hematol Oncol. 2021;14:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang Y, Kohler ME, Chien C, Sauter C, Jacoby E, Yan C, et al. TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Sci Transl Med. 2017;9:eaag1209.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM, Aghamirzaie D, et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol Cell. 2018;71:858–871.e858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miedema JR, Kaiser Y, Broos CE, Wijsenbeek MS, Grunewald J, Kool M. Th17-lineage cells in pulmonary sarcoidosis and Lofgren’s syndrome: friend or foe? J Autoimmun. 2018;87:82–96.

    Article  CAS  PubMed  Google Scholar 

  22. Gray SM, Amezquita RA, Guan T, Kleinstein SH, Kaech SM. Polycomb repressive complex 2-mediated chromatin repression guides effector CD8(+) T cell terminal differentiation and loss of multipotency. Immunity. 2017;46:596–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods. 2017;14:975–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pipkin ME. Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development. Immunol Rev. 2021;300:100–24.

    Article  CAS  PubMed  Google Scholar 

  25. Yang CY, Best JA, Knell J, Yang E, Sheridan AD, Jesionek AK, et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat Immunol. 2011;12:1221–9.

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Lopez-Moyado IF, Seo H, Lio CJ, Hempleman LJ, Sekiya T, et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature. 2019;567:530–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527:249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ, et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018;559:405–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeannet G, Boudousquié C, Gardiol N, Kang J, Huelsken J, Held W. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc Natl Acad Sci USA. 2010;107:9777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG, Turtle CJ, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30:492–500.

    Article  CAS  PubMed  Google Scholar 

  31. Turtle CJ, Hanafi LA, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med. 2016;8:355ra116.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Agnellini P, Wolint P, Rehr M, Cahenzli J, Karrer U, Oxenius A. Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proc Natl Acad Sci USA. 2007;104:4565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shin H, Blackburn SD, Intlekofer AM, Kao C, Angelosanto JM, Reiner SL, et al. A role for the transcriptional repressor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Immunity. 2009;31:309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quigley M, Pereyra F, Nilsson B, Porichis F, Fonseca C, Eichbaum Q, et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat Med. 2010;16:1147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murphy TL, Tussiwand R, Murphy KM. Specificity through cooperation: BATF-IRF interactions control immune-regulatory networks. Nat Rev Immunol. 2013;13:499–509.

    Article  CAS  PubMed  Google Scholar 

  36. Seo H, Gonzalez-Avalos E, Zhang W, Ramchandani P, Yang C, Lio CJ, et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 2021;22:983–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aronheim A, Zandi E, Hennemann H, Elledge SJ, Karin M. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol. 1997;17:3094–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jin C, Li H, Murata T, Sun K, Horikoshi M, Chiu R, et al. JDP2, a repressor of AP-1, recruits a histone deacetylase 3 complex to inhibit the retinoic acid-induced differentiation of F9 cells. Mol Cell Biol. 2002;22:4815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Franchina DG, Dostert C, Brenner D. Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol. 2018;39:489–502.

    Article  CAS  PubMed  Google Scholar 

  40. Scharping NE, Rivadeneira DB, Menk AV, Vignali PDA, Ford BR, Rittenhouse NL, et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol. 2021;22:205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanigawa S, Lee CH, Lin CS, Ku CC, Hasegawa H, Qin S, et al. Jun dimerization protein 2 is a critical component of the Nrf2/MafK complex regulating the response to ROS homeostasis. Cell Death Dis. 2013;4:e921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Igarashi K, Kurosaki T, Roychoudhuri R. BACH transcription factors in innate and adaptive immunity. Nat Rev Immunol. 2017;17:437–50.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang M, Zhou L, Zhao H, Zhang Y, Wei G, Hong R, et al. Risk factors associated with durable progression-free survival in patients with relapsed or refractory multiple myeloma treated with anti-BCMA CAR T-cell therapy. Clin Cancer Res. 2021;27:6384–92.

    Article  CAS  PubMed  Google Scholar 

  44. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–902.e1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stuart T, Srivastava A, Madad S, Lareau CA, Satija R. Single-cell chromatin state analysis with Signac. Nat Methods. 2021;18:1333–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015;31:2382–3.

    Article  CAS  PubMed  Google Scholar 

  47. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.

    Article  Google Scholar 

  48. Zhu LJ, Gazin C, Lawson ND, Pagès H, Lin SM, Lapointe DS, et al. ChIPpeakAnno: a bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinform. 2010;11:237.

    Article  Google Scholar 

  49. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  Google Scholar 

  50. Guo X, Chen F, Gao F, Li L, Liu K, You L, et al. CNSA: a data repository for archiving omics data. Database. 2020;2020:baaa055.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen FZ, You LJ, Yang F, Wang LN, Guo XQ, Gao F, et al. CNGBdb: China National GeneBank DataBase. Yi Chuan. 2020;42:799–809.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China, Stem Cell and Translation Research (2018YFA0109300), the Zhejiang Province Science Foundation for Distinguished Young Scholars (LR19H080001), the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2020R01006), and the National Natural Science Foundation of China (81870080, 91949115, 82000187, 81900176). Thanks for the technical support by the Core Facilities, Zhejiang University School of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

PJ and PQ conceived the project and designed the experiments. PJ analyzed data and wrote the manuscript. ZZ conducted CAR-T cells with BATF and IRF4 knockdown and performed assays in vivo. ZL performed assays in vitro. YXH and XL were involved in patient sample acquisition. YLH, XZ, HZ, MZ, JD, TG provided cell culture and molecular biology assistance. HH and PQ supervised the overall project and co-wrote the manuscript. All authors contributed to reading and editing the manuscript.

Corresponding authors

Correspondence to He Huang or Pengxu Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Zhang, Z., Hu, Y. et al. Single-cell ATAC-seq maps the comprehensive and dynamic chromatin accessibility landscape of CAR-T cell dysfunction. Leukemia 36, 2656–2668 (2022). https://doi.org/10.1038/s41375-022-01676-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01676-0

This article is cited by

Search

Quick links