
REVIEW ARTICLE OPEN

ACUTE MYELOID LEUKEMIA

Current status and future perspectives in targeted therapy of
NPM1-mutated AML
Roberta Ranieri1,3, Giulia Pianigiani 1,3, Sofia Sciabolacci 1, Vincenzo Maria Perriello1, Andrea Marra1, Valeria Cardinali1,
Sara Pierangeli1, Francesca Milano1, Ilaria Gionfriddo1, Lorenzo Brunetti1,2,4, Maria Paola Martelli1,4 and Brunangelo Falini 1,4✉

© The Author(s) 2022

Nucleophosmin 1 (NPM1) is a nucleus-cytoplasmic shuttling protein which is predominantly located in the nucleolus and exerts
multiple functions, including regulation of centrosome duplication, ribosome biogenesis and export, histone assembly,
maintenance of genomic stability and response to nucleolar stress. NPM1 mutations are the most common genetic alteration in
acute myeloid leukemia (AML), detected in about 30–35% of adult AML and more than 50% of AML with normal karyotype. Because
of its peculiar molecular and clinico-pathological features, including aberrant cytoplasmic dislocation of the NPM1 mutant and wild-
type proteins, lack of involvement in driving clonal hematopoiesis, mutual exclusion with recurrent cytogenetic abnormalities,
association with unique gene expression and micro-RNA profiles and high stability at relapse, NPM1-mutated AML is regarded as a
distinct genetic entity in the World Health Organization (WHO) classification of hematopoietic malignancies. Starting from the
structure and functions of NPM1, we provide an overview of the potential targeted therapies against NPM1-mutated AML and
discuss strategies aimed at interfering with the oligomerization (compound NSC348884) and the abnormal traffic of NPM1
(avrainvillamide, XPO1 inhibitors) as well as at inducing selective NPM1-mutant protein degradation (ATRA/ATO, deguelin,
(-)-epigallocatechin-3-gallate, imidazoquinoxaline derivatives) and at targeting the integrity of nucleolar structure (actinomycin D).
We also discuss the current therapeutic results obtained in NPM1-mutated AML with the BCL-2 inhibitor venetoclax and the
preliminary clinical results using menin inhibitors targeting HOX/MEIS1 expression. Finally, we review various immunotherapeutic
approaches in NPM1-mutated AML, including immune check-point inhibitors, CAR and TCR T-cell-based therapies against
neoantigens created by the NPM1 mutations.
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INTRODUCTION
Nucleophosmin 1 (NPM1) is a ubiquitous nucleus-cytoplasmic
shuttling protein [1] predominantly resident in the nucleolus
whose functions are pivotal for many cellular processes including
histone assembly, centrosome duplication, ribosome biogenesis
and export, maintenance of genomic stability and response to
nucleolar stress [2].
Mutations of NPM1 gene are the most frequent genetic lesion in

acute myeloid leukemia (AML), being detectable in about one-
third of adult AML and 50–60% of AML with normal karyotype
[3, 4]. These mutations are a driver genetic lesion and AML
defining event that occurs in the context of clonal hematopoi-
esis, frequently promoted by genes such as DNMT3A and TET2
[4]. Distinctive features of NPM1-mutated AML include the
mutual exclusion with recurrent cytogenetic abnormalities, the
association with specific gene expression [5] and microRNA [6]
profiles and the high stability of NPM1 mutations at relapse [7].
Another characteristic of NPM1-mutated AML is the aberrant

cytoplasmic dislocation of the NPM1 mutant and NPM1 wild-
type proteins (through heterodimerization) [3, 8, 9]. Moreover,
the mutant NPM1 is directly involved in promoting high
expression of homeobox (HOX) genes [10] which are necessary
for maintaining the undifferentiated state of leukemic cells.
Notably, this function is closely dependent on the cytoplasmic
localization of the mutant. However, the mechanisms underlying
leukemogenesis in NPM1-mutated AML still remain largely
unknown [4]. According to the 5th edition of the World Health
Organization (WHO) of hematolymphoid tumors, NPM1-mutated
AML can be diagnosed irrespective of the percentage of blasts,
based on previous observations that cases classified as MDS or
MDS/MPN with NPM1 mutations quickly progressed to AML [11].
Because of the above unique features, NPM1-mutated AML is
recognized as a distinct entity, within the category of AML with
recurrent genetic abnormalities of the WHO classification [11].
The main characteristics of NPM1-mutated AML are summarized
in Table 1.
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The standard therapy of NPM1-mutated AML in young adults is
based upon induction chemotherapy (±FLT3 inhibitors) and
consolidation cycles with high/intermediate dose of cytarabine
(ARA-C) ± allogeneic hematopoietic stem cell transplantation
(HSCT) in first complete remission (CR), depending on the status
of the FLT3 gene and measurable residual disease-MRD [12, 13].
However, despite the remarkable advances in the treatment of
NPM1-mutated AML, about 50% of patients still died of
progressive disease. Thus, there is a need for new therapeutic
opportunities. Whole genomic approaches have unraveled the
molecular heterogeneity of AML [14, 15] and given a great input
to the development of small molecules aimed to target specific
genetic abnormalities [16, 17]. Because of their small-size
(<500 Da), these compounds can easily penetrate the cell
membrane and exert their activity on intracellular proteins
involved in cell signaling mechanisms (e.g., kinases) that promote
the tumor growth [18]. In the past 5 years, several small molecules
have been approved by the Food and Drug Administration (FDA)
for AML treatment, including FLT3, IDH1/2 and BCL-2 inhibitors
[19, 20]. Contemporarily, the use of immunotherapy as an
additional therapeutic strategy has been explored.
Here, we provide an overview of the current status and future

perspectives of targeted therapies in NPM1-mutated AML.

MOLECULAR THERAPEUTIC TARGETING OF NPM1-MUTATED
AML
Targeting the structure of NPM1
Small molecules can be potentially designed to bind to any
portion of a given protein to modulate its function [21]. The multi-
domain conformation of NPM1 makes it an appealing target. In
fact, NPM1 consists of three domains: the amino-terminal core
region (N-term) similar to the members of the nucleophosmin
family; the central region involved in the histone binding and the
carbossi-terminal region (C-term) unique for NPM1 protein, that is
important for its nucleolar localization [2, 22].
The N-term domain contains two nuclear export signals (NES)

that promote the shuttling of NPM1 from the nucleus to the
cytoplasm through the interaction with the nuclear exporter XPO1
(CRM1, Exportin-1) [9]. The N-term region has also chaperone
activity which is crucial for ribosome maturation and oligomeriza-
tion of NPM1 with other partners and itself [23]. The three-
dimensional structure of the N-term consists of eight antiparallel
β-strands forming a β-barrel with jelly-roll topology [24]. NPM1

monomers are unfold and intrinsically unstable [23]. However,
they are stabilized through formation of a crown-shaped
pentamer, with two pentamers interacting in a head-to-head
fashion to form a decamer [25]. Association into pentamers is
strictly regulated and it is critical for NPM1 functions.
Therefore, disruption of NPM1 oligomers may promote unfold-

ing of the protein and alter NPM1 structure and functions.
Targeting NPM1 oligomerization can be achieved using
NSC348884, a water-insoluble compound that interacts with the
high hydrophobic NPM1 dimerization surface [26]. NSC348884
was more effective in disrupting NPM1 oligomerization and
inducing apoptosis in NPM1-mutated OCI-AML3 cells than in NPM1
wild-type HL-60 and OCI-AML2 cells [27] (Fig. 1). This is somewhat
surprising because NPM1 mutations target the C-terminal domain
whilst NSC348884 targets the N-terminal domain.
The N-term region is critical for the interaction of NPM1 with its

partners through positively charged surface. These molecular
interactions are critical to build-up the structure of the nucleolus
[28, 29]. In fact, the nucleolus is the result a “liquid-liquid” phase
separation leading to the segregation of NPM1 and other
components of the nucleolus from the surrounding nucleoplasm
[30, 31], similarly to how oil and water separate from each other
when mixed. This process is mediated by the interaction of the
native pentameric NPM1 molecule with proteins containing R-
motifs, i.e., multivalent arginine-rich linear motifs (sharing features
with nucleolar localization signals) and nascent ribosomal RNA
(rRNA) [29, 32]. Distruption of NPM1 oligomers can interfere with
this process.
Many NPM1 interactors that are thought to be involved in

leukemogenesis have been claimed to be dislocated in the
cytoplasm by the NPM1 mutant [9], although this event has been
never conclusively demonstrated in primary NPM1-mutated AML
cells [4]. Thus, small molecules targeting NPM1 protein–protein
interactions could also help preventing downstream effects on
important molecules potentially implicated in AML pathogenesis.
The NPM1 C-terminus consists of a three-helix bundle [33]

stabilized by strictly conserved aromatic residues (Phe268, Phe276,
Trp288, Trp290) [25], and contains the nucleolar localization signal
(NoLS) [25]. This aromatic-rich NoLS seems to be rather specific for
NPM1. Mutations of tryptophans 288 and 290 (or 290 only) cause
unfolding of the three-helix bundle and loss of NPM1 NoLS [9].
This event together with the insertion of a new NES motif, are
responsible for the aberrant delocalization of NPM1 in the
cytoplasm of AML cells carrying NPM1 mutations [8, 9].

Table 1. Clinical, pathological and molecular features of NPM1-mutated AML.

Main characteristics of NPM1-mutated AML

About 30–35% of adult AML (50–60% of AML with normal karyotype). Female predominance

Markedly hypercellular bone marrow. Rare fibrosis. Frequent myelomonocytic (FAB M4) or monocytic (FAB M5) appearance but other FAB
categories (except M7) can be represented

Frequent multilineage involvement, as shown by IHC (cytoplasmic NPM1)

Diagnosis can be done irrespective of the percentage of blast cellsa

Low/moderate WBC count in the absence of FLT3-ITD. Progressively increase in WBC when concomitant FLT3-ITD and/or DNMT3A mutations are
present

Frequent extramedullary involvement, especially skin (easily detectable by IHC)

No/low expression of CD34 in the bulk leukemic population. The rare CD34+ leukemic stem cells harbor the NPM1 mutation

Excellent response to induction chemotherapy

Relatively good outcome in the absence of FLT3-ITD. Prognosis may vary depending upon concomitant mutations

Amenable for MRD monitoring by qRT-PCR for NPM1 mutant transcripts

“AML with cytoplasmic nucleophosmin” (NPM1c) has been also used as a synonym of NPM1-mutated AML.
IHC immunohistochemistry, WBC white blood cell count, MRD measurable residual disease, qRT-PCR quantitative reverse transcription polymerase chain
reaction.
aAccording to the 5th edition of WHO classification [11].

R. Ranieri et al.

2352

Leukemia (2022) 36:2351 – 2367



The C-term of NPM1 mutated protein is unfolded and therefore
difficult to target [24, 25]. The only small molecule capable of
directly binding this region is avrainvillamide. This natural alkaloid
was found to form tight complexes with the NPM1 protein by
S-alkylation of cysteine residues [34, 35] and to induce partial
nuclear relocalization of mutant NPM1 in OCI-AML3 cells and
primary AML cells. This effect was secondary to the ability of
avrainvillamide to alkylate specifically Cys275 (in helix H2 of the
three-helix bundle at C-terminus) of certain NPM1 mutants [34]
and to inhibit the nuclear export of XPO1 cargo proteins, including
NPM1 mutants [34]. Thus, avrainvillamide can relocate cytoplasmic
NPM1, acting as a substitute for NoLS [34] rather than inducing
refolding of the C-terminus three-helix structure of the mutant
[34] (Fig. 1). Avrainvillamide was more active against NPM1-
mutated than wild-type AML cells [36], probably due to the
unfolded structure of the C-terminus three-helix bundle, and
caused proteasomal degradation of NPM1 mutant and differentia-
tion of OCI-AML3 cells [36]. Moreover, it demonstrated strong anti-
proliferative activity against a PDX model of NPM1-mutated AML
[36].

Targeting the nucleolus of NPM1-mutated cells
NPM1 acts as a nucleolar stress sensor [37]. The nucleolus of
NPM1-mutated AML cells may be particularly vulnerable to stress
because it is NPM1 depleted due to both haploinsufficiency and
cytoplasmic delocalization [38]. Therefore, inducing nucleolar
stress represents a therapeutic option in NPM1-mutated AML
[39] (Fig. 1). This prompted us to evaluate actinomycin D which, at
low dosage, is a selective inhibitor of RNA polymerase I and
ribosome biogenesis. This drug induced nucleolar stress in NPM1-
mutated cells [40, 41] and CR in relapsed/refractory NPM1-mutated
AML [38, 40]. Other drugs causing nucleolar stress through
inhibition of ribosome biogenesis [42] should be investigated in
NPM1-mutated AML.
However, the mechanism of action of actinomycin D in NPM1-

mutated AML may be even more complex. In fact, NPM1 mutants

can impede the formation of acute promyelocytic leukemia (APL)
nuclear bodies (NBs) [43], which in turn are regulators of
mitochondria fitness and key senescence effectors [44]. Thus,
NPM1-mutated AML cells are characterized by defective mito-
chondrial function [44]. Actinomycin D acts on NPM1 mutant-
primed mitochondria by releasing mitochondrial DNA, activating
cyclic GMP-AMP synthase signaling, producing reactive-oxygen
species (ROS) that restores NB formation to drive TP53 activation
and senescence of NPM1-mutated AML cells. Interestingly,
actinomycin D appears to potentiate the activity of venetoclax
on mitochondrial function and apoptosis [44].

Targeting NPM1 protein levels
Targeting the levels of mutant NPM1 represents another ther-
apeutic opportunity (Fig. 1). Combining arsenic trioxide (ATO) with
all-trans retinoic acid (ATRA) resulted into proteasome-dependent
degradation of NPM1 oncoprotein and death in AML cell lines and
primary AML cells carrying NPM1 mutations [43, 45]. Treatment of
the NPM1-mutated AML cell lines OCI-AML3 with deguelin, a
rotenoid isolated from several plant species [46, 47], and IMS-M2
with (-)-epigallocatechin-3-gallate (ECGT) [48], a major catechin
found in green tea, were effective in reducing the NPM1 mutant
but not the wild-type protein and in inducing apoptosis. Moreover,
the imidazoquinoxaline derivative EAPB0503 induced a selective
proteasome-mediated degradation of NPM1 mutant protein
through EAPB0503-mediated SUMOylation and ubiquitylation
[49]. This event was followed by restoration of NPM1 wild-type
protein in the nucleolus [50], apoptosis (through selective down-
regulation of HDM2 and activation of p53 [49]) and reduction of
leukemia burden in NPM1-mutated AML xenografts [49, 50].
Moreover, introducing NPM1-mutation into cells normally bearing
wild-type NPM1 sensitized them to EAPB0503, leading to their
growth arrest [50].
Mutant NPM1 can be also targeted through proteolysis

targeting chimera (PROTAC) which allows ubiquitination and
proteasome-mediated degradation of the target protein [51]

Fig. 1 Targeting the structure, localization and levels of the wild-type and mutant NPM1 proteins. Mechanisms of targeting include:
interference with protein folding, prevention of NPM1 oligomerization, inhibition of protein–protein interactions (PPIs), promotion of
nucleolar stress, block of nuclear export, and induction of protein degradation.
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(Fig. 1). PROTAC promoted degradation of fused oncoproteins in
MLL leukemia subtypes [52] and its use could be extended to
NPM1-mutated AML. In this regard, selective degradation of
mutant NPM1 through degron-tag, invariably induced differentia-
tion, and growth arrest of NPM1-mutated cell lines [10], confirming
the validity of such approach.

Targeting NPM1 localization
The multilayered nucleolar structure (the fibrillar core, surrounded
by the dense fibrillar component and the granular component) is
dictated by the “liquid-liquid” phase separation involving nucleo-
lar proteins, primarily native NPM1 and fibrillarin that segregate in
the granular component and dense fibrillar component, respec-
tively [30]. NPM1 is predominantly localized in the nucleolus, and
shuttles to the cytoplasm as a consequence of the interaction of
the two N-terminal NES with XPO1. XPO1 recognizes and binds
also other NES-containing molecules including tumor-suppressor
proteins [53, 54], promoting their export from the nucleus to the
cytoplasm.
Altered nuclear-cytoplasmic shuttling is a peculiar characteristic

of NPM1-mutated AML [9]. Thus, targeting nuclear export is an
appealing strategy in this pathological condition (Fig. 1). The
natural compound leptomycin B shows strong XPO1 inhibitory
activity in vitro [55] but its irreversible binding to XPO1 is
associated with severe toxicity [56]. More recently, inhibitors that
bind reversibly to XPO1 have become available. These drugs,
collectively known as selective inhibitors of nuclear export (SINEs),
include KPT-185, KPT-249, KPT-251, KPT-276, KPT-330, and KPT-335
[57] (Table 2). Among them, KPT-330 (selinexor) is the most well-
known SINE compound that has been also tested in AML. [58]
However, selinexor was scarcely active towards NPM1-mutated
AML patients in early-phase clinical trials [59–61]. This is likely due
to the once or twice/week administration schedule of selinexor
(due to its toxicity profile) which is not sufficient to stably inhibit
the interaction between mutated NPM1 and XPO1 (Pianigiani et al.
BioRxiv 2021). An attractive alternative to selinexor is the second-
generation SINE compound KPT-8602 (eltanexor) that crosses at
lower extent the blood-brain barrier resulting in better tolerability.
More importantly, the prolonged and frequent dosing schedule of
eltanexor (i.e., 5 days/week) led to a greater anti-leukemic efficacy
in preclinical animal models of hematological malignancies
[62, 63]. This 5 days/week eltanexor schedule resulted into more
robust anti-leukemic activity than selinexor alone in models of
NPM1-mutated AML cells in vitro and in vivo (unpublished data).
Interestingly, eltanexor synergizes with a BCL-2 inhibitor by
increasing apoptosis in primary AML cells [64].

TARGETING OF OTHER NPM1 PATHWAYS
Targeting apoptosis pathway
The BCL-2 family of proteins play a key role in the intrinsic
mitochondrial apoptotic response and BCL-2 is a key survival
factor in AML. The anti-apoptotic proteins BCL-2 and MCL1 inhibit
apoptosis by sequestering the pro-apoptotic protein BIM, which is
required for activation of BAX/BAK and the subsequent induction
of mitochondrial outer membrane permeabilization. Venetoclax, a
selective BCL-2 inhibitor, when combined with hypomethylating
agents (e.g., 5-azacytidine) or low-dose cytarabine (LDAC), shows
anti-leukemic activity in 60-70% of AML patients [65]. By down-
regulating MCL1 and inducing the expression of the pro-death
proteins NOXA and PUMA, azacytidine inhibits synergistically the
pro-survival proteins MCL1 and BCL-XL, increasing the depen-
dence of leukemia cells on BCL-2. Moreover, venetoclax (with 5-
azacytidine) induces leukemic stem cells toxicity by decreasing
amino acid uptake, which is essential for oxidative phosphoryla-
tion and survival [66, 67]. Thus, venetoclax+ 5-azacytidine (or
decitabine) and venetoclax+ LDAC have become the standard
treatment for newly diagnosed older or unfit AML patients

[12, 65]. In keeping with preclinical studies [68], NPM1-mutated
AML patients appear to be particularly sensitive to venetoclax
(Fig. 2). Whether this efficacy is related to the high expression of
HOX genes [5], that in turn are linked to BCL-2 inhibitor sensitivity
and responsiveness [69], remains to be defined. NPM1 mutant-
primed defect in mitochondrial function may also be responsible
for the higher sensitivity to venetoclax [44].
NPM1-mutated AML particularly benefits from venetoclax-based

regimens, both at first diagnosis [70, 71] (independently by the
FLT3 status [72]) and in the relapsed/refractory setting [73–75]
(Table 2). In the phase 3 clinical trial (NCT02993523) of venetoclax
plus azacytidine, 66.7% of NPM1-mutated AML patients achieved
CR+ CRi [65], a majority of them being negative for measurable
residual disease (MRD). Similar good results have been reported in
real-world [76]. One-year OS for elderly patients with NPM1-
mutated AML exceeded 80%, with an estimated 2-year OS of 70%
[70]. Usually, the response was reached with 1–2 cycles and a
good safety profile [65]. In trials NCT02287233 and NCT03069352,
venetoclax plus LDAC resulted into CR+ CRi of 89% and 78%,
respectively, in NPM1-mutated AML patients [77, 78]. CR and CRi of
80% and 100%, were also achieved in NPM1-mutated AML
patients, when venetoclax was combined with 5+ 2 (cytarabine+
idarubicin) or FLAG+ IDA (fludarabine, cytarabine, granulocyte
colony-stimulating factor, and idarubicin) (ACTRN126160004454
71, NCT03214562) [79, 80].
CR rates in refractory/relapsed NPM1-mutated AML are lower,

ranging between 46% and 66.8%. In general, venetoclax plus
5-azacitidine was associated with better results than venetoclax
plus decitabine or LDAC. Therapy was usually administered
continuously until progression. However, about half of AML
patients carrying NPM1 and/or IDH2 mutations and/or achieving
a molecular CR after at least 12 months of a venetoclax-based
regimen, experienced a long treatment-free remission, after
therapy cessation [81]. Venetoclax-based regimens have been
also used pre-emptively to treat 12 NPM1-mutated AML patients
with persistent or relapsed/progressed MRD [82]. All five patients
with persistent MRD and 6/7 patients with relapsed/progressed
MRD, achieved durable molecular CR, after 1–2 cycles of
venetoclax, with <17% grade >3 non-hematological toxicities
[82]. Thus, venetoclax-based therapies have the potential to be
used for NPM1-mutated MRD-positive patients, as bridge to
allotransplant (Fig. 3A, B).
Unfortunately, most patients treated with these regimens

develop resistance over time and eventually relapse. To circum-
vent this problem, new combinations are currently tested,
including venetoclax plus XPO1 [64] or menin [83, 84] inhibitors.
In mouse models of NPM1-mutated/FLT3-ITD AML, venetoclax plus
menin inhibitor was superior to the menin inhibitor alone, in
eliminating leukemic cells (including leukemia stem/progenitor
cells), decreasing Bcl-2 and Bcl-xL levels [83], and significantly
prolonging mice OS [83]. ATO can potentiate the activity of
venetoclax by attenuating Mcl-1 upregulation induced by
venetoclax in AML cells. ATO plus venetoclax synergistically
induced apoptosis in OCI-AML3 cells in vitro and were active in
two R/R NPM1-mutated AML patients [85].

Targeting the MLL-menin complex
The Menin (MEN1) gene is located on chromosome 11q13 and
encodes for a protein which regulates tissue-specific gene
expression [86]. In human, germline MEN1 mutations cause the
multiple endocrine neoplasia type-1 syndrome [87]. In mice,
knock-out of the Men1 gene leads to reduced expression of Hoxc6
and Hoxc8 genes during embryogenesis [88]. Menin is a co-factor
of the histone-lysine-N-methyltransferase 2A (KMT2A) that induces
the trimethylation of lysine 4 on histone 3, a histone mark that
correlates with active transcription of HOX genes and their co-
factor MEIS1 (HOX/MEIS). HOXA and HOXB gene clusters are
highly expressed in normal adult hematopoietic stem/progenitor
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cells but are physiologically silenced in mature blood cells,
suggesting their role in self-renewal [89]. High expression of
HOXA and HOXB cluster genes and their co-factor MEIS1
contributes to the gene signature typical of NPM1-mutated AML
[4, 5]. Interestingly, the HOXA and HOXB expression levels in
NPM1-mutated AML overlap with those of normal hematopoietic
stem/progenitor cells, pointing to common mechanisms regulat-
ing HOX expression and to persistent expression rather than
upregulation of HOX genes in NPM1-mutated AML [90].
More recently, we proved that HOX expression is directly

dependent upon the aberrant cytoplasmic dislocation of NPM1
mutants [10]. Indeed, nuclear relocalization or targeted
degradation of cytoplasmic mutated NPM1 resulted into the
rapid loss of HOX expression, followed by differentiation and
growth arrest [10]. However, the link between cellular localiza-
tion of NPM1 mutants and HOX expression remains unclear. A
possible model implies that NPM1 directly binds nucleolar
putative factors that repress HOX genes required for proper
differentiation and displaces them from the nucleus to the
cytoplasm [4]. This would be in keeping with the finding that
nuclear relocalization of NPM1 mutants from the cytoplasm to
the nucleus restore the normal activity of these factors, leading
to downregulation of HOX genes [4]. Alternatively, recruitment
of NPM1 mutants to HOX loci through their interaction with
chromatin-bound XPO1 [91] could be responsible for HOX
expression maintenance, cytoplasmic delocalization of NPM1
representing a mere epiphenomenon. We previously suggested
that NPM1 mutants may induce leukemia by acting both at the
chromatin level and by delocalizing NPM1-interacting partners
in the cytoplasm [4].
Dependence of NPM1-mutated AML cells on epigenetic

machinery for HOX regulation [92] provides the rationale for
using inhibitors of KMT2A-menin protein interaction [93, 94]
(Fig. 2; Table 2). The VTP-50469 inhibitor showed strong in vitro
and in vivo anti-leukemic activity on NPM1-mutated AML cells,
causing a dose-dependent reduction in cell proliferation, a
significant downregulation of HOXA/B clusters and MEIS1 gene
expression, a marked differentiation of leukemic cells, a
reduction of AML engraftment and a prolonged survival in mice
PDX models [92, 95, 96]. This occurred especially through rapid
repression of important co-factors of HOX genes (MEIS1 and
PBX3), the effect on expression of HOXA and HOXB genes being
not relevant [97]. The MI-3454 inhibitor was very effective in
inhibiting cell proliferation and differentiation of NPM1-mutated
AML cells, independently from the coexistence of other
mutations in patients’ samples, and in reducing blast infiltration
of organs and expression of MEIS1 and FLT3 in PDX NPM1-
mutated mouse models [95].
Menin inhibitors were reported to prevent the transformation

of Npm1-mutated mouse hematopoietic progenitors into leu-
kemic cells, implying that they could also be effective in Npm1-
mutated preleukemia [96]. However, we believe that this
concept is difficult to translate into clinic because NPM1
mutations in patients do not associate with a preleukemic state
[4]. Moreover, myelodysplasia with NPM1 mutations is very rare
and cases with these characteristics usually represent already
early-stage AML [12]. Thus, we expect that the value of menin
inhibitors in clinic will be mainly limited to the therapy of frank
NPM1-mutated AML.
Menin inhibitors was also combined with inhibitors of FLT3

(mutated in about 40% of NPM1-mutated AML [3]), demonstrating
a synergistic effect that resulted in stronger cell growth inhibition,
apoptosis and differentiation of AML blast cells [98] and induction
of long-lasting CR in PDX mice models of NPM1-mutated/FLT3-ITD
AML [99]. Menin inhibitors have been also combined with XPO1
inhibitors. The rationale for this association is that nuclear
relocation of the NPM1 mutant by the XPO1 inhibitors is
associated with downregulation of HOX genes [10]. Thus, theTa
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two compounds could exert a cumulative effect on down-
regulation of HOX genes through different mechanisms. The
utility of combining menin inhibitors with venetoclax has been
already mentioned [83]. All these associations could help
preventing the rapid development of resistance to targeted
monotherapies.
Menin inhibitors, including KO-539, SNDX-5613, JNJ-75276617

and DS-1594b, are currently evaluated in clinical trials [100, 101].
KO-539 induced CR in 2/6 patients with R/R AML who were
evaluable for efficacy analysis. One of them had an NPM1-mutated
AML co-mutated for DNMT3A and KMT2D who received KO-539 at
200mg/die, as the eight line of therapy, achieving an MRD-
negative CR [101]. This trial continues to enroll patients with
NPM1-mutated and KTM2A-rearranged AML on the doses of 200
and 600mg (NCT04067336). SNDX-5613 (an analog of VTP-50469)
was very active in PDX mouse models of NPM1-mutated AML,
including animals remaining in CR 1 year after cessation of therapy
[96, 102]. The safety and efficacy of SNDX-5613 in adult patients
with R/R NPM1-mutated or KTM2A-rearranged AML is being
evaluated in the AUGMENT-101 phase I/II trial (NCT04065399).
Preliminary results of this study were released by Syndax in April
2021. By March 2021, the trial had enrolled in the phase 1 cohort,
43 patients (median age 54 years) who had received a median of 3
previous lines of treatment. The most common side effects (>5%)
included QT prolongation (14%), differentiation syndrome (5%)
and anemia (5%). The overall response rate in the 7 patients with
NPM1-mutated AML was 29% (2/7). In keeping with the proposed
mechanism of menin inhibitors, RNA-Seq analysis of the bone
marrow samples from responding patients exhibited downregula-
tion of MEIS and HOXA9 genes and upregulation of the
differentiation antigens CD11b, CD14 and CD13. The phase 2
part of the trial is ongoing. JNJ-75276617 is a potent inhibitor of
the binding between menin and KTM2A. Its safety and activity are
being tested in NCT04811560 that enrolls AML patients harboring
NPM1 mutations or KMT2A rearrangements. However, no data

have been released so far. The safety and efficacy of DS-1594b
menin inhibitor will be evaluated as single drug or in combination
with azacytidine and venetoclax regimens in a phase 1/2 clinical
trial (NCT04752163). To maximize the depth and durability of
clinical response, the Biomea Fusion, Inc. has recently developed
BMF-219, an orally bioavailable, potent and selective irreversible
covalent menin inhibitor. Clinical trial with this compound is
ongoing (NCT05153330).

Targeting SYK signaling
In a phase 1b/2 trial (NCT02343939), entospletinib, a selective oral
inhibitor of the spleen tyrosine kinase (SYK) which is constitutively
activated in AML promoting survival and proliferation [103], when
combined with chemotherapy, was more active in patients with
HOXA9/MEIS1 signature (as in NPM1-mutated AML) than in the
whole patient population [104] (Fig. 2). These results suggest that
the increased expression and activity of SYK protein is strictly
dependent upon the deregulation of HOXA and MEIS genes [105].
Based on this evidence, FDA approved a phase 3 trial to assess the
efficacy and safety of entospletinib in combination with che-
motherapy in adult patients with newly diagnosed NPM1-mutated
AML (NCT05020665).

IMMUNOTHERAPY OF NPM1-MUTATED AML
Ideally, any target antigen for AML immunotherapy should be
expressed at high levels in the whole leukemic population,
including leukemic stem cells, and to be absent or low expressed
in normal hematopoietic cells and other tissues. Leukemia-
associated antigens (e.g., CD33 and CD123) are usually strongly
expressed in AML cells (especially in NPM1-mutated AML cells
[106–108]) but can also be detected in normal hematopoietic
stem cells and in extramedullary tissues (e.g., CD123 in endothelial
cells). This limits their use as target antigens for immunotherapy
because of potential off-target effects.

Fig. 2 Other approaches to target NPM1-mutated AML. NPM1-mutated AML can be targeted with selective inhibitors of menin to
downregulate HOX/MEIS, with BCL-2 (venetoclax) to induce apoptosis and with inhibitors of the SYK pathway (entospletinib).
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Fig. 3 Venetoclax in NPM1-mutated AML. A Algorithm for the treatment of NPM1-mutated AML patients older than 60 years. ^Based on the
presence or absence of FLT3 mutations. CR complete remission, FLT3i FLT3 inhibitors, HMA hypomethylating agents, LDAC low-dose
cytarabine, allo-HSCT allogeneic hematopoietic stem cell transplantation. B Examples of preemptive therapy with venetoclax as bridging to
allo-HSCT. All three patients achieved molecular CR (negativity for NPM1 mutant transcripts) before allo-HSCT. VTX venetoclax, 5-AZA 5-
azacytidine, CHT chemotherapy.
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Conversely, leukemia-specific antigens deriving from altered
proteins encoded by leukemogenic mutations (e.g., NPM1), are
specifically expressed in malignant clones and therefore repre-
sent ideal targets. In particular, the NPM1 mutant neoantigen can
be considered an ideal AML target for a number of reasons. First,
NPM1 mutations are common driver, gate-keeper events [109],
very stable at relapse [4], specific for AML and absent in normal
tissues [110]. Second, the NPM1 mutated proteins are detectable
in chemoresistant leukemic stem cells [108], making them possibly
vulnerable to immune surveillance and eradication. Third,
although >50 NPM1 mutations have been identified, the 4 bp
frameshift insertion occurring in NPM1 mutant A is responsible for
almost 80-85% of all mutations and more rare NPM1 mutations
lead to the same amino acidic changes at NPM1 C-terminus.
Fourth, the newly acquired amino acid C-terminus sequence of
NPM1 mutant proteins is highly immunogenic in animals, eliciting
specific antibodies. Fifth, the aberrant localization of the NPM1
mutant proteins in the cytoplasm of leukemic cells may favor their
processing by the Human Leukocyte Antigen (HLA) MHC class I
degradation pathway leading to HLA presentation and anti-cancer
immune response. Indeed, using in silico analysis, we predicted
that several peptides could bind to specific HLA class I molecules
[111]. Sixth, specific autologous cytotoxic T-cell responses against
NPM1 mutant peptides could be detected in NPM1-mutated AML
patients [112–115]. These immune responses associated with
molecular CR [116] and may explain the relatively favorable
outcome of NPM1-mutated AML [117]. interestingly, NPM1-
mutated AML sensitivity to T-cell immunity has been observed
not only in the autologous but also in allogeneic setting. Although
NPM1-mutated AML patients without FLT3-ITD has a good
prognosis, those who underwent allogeneic HSCT showed a
particularly long-term disease control [118], probably due to
specific graft-versus leukemia effect. Moreover, polyspecific T-cell
anti-leukemic responses, even against NPM1-mutated peptides,

have been observed following preemptive donor lymphocyte
infusions (DLIs) at molecular relapse after allogeneic HSCT [116].
Finally, the importance of eradicating the NPM1-mutated clone to
achieve cure of AML is exemplified by the clinical observation of
patients with NPM1-DNMT3A double-mutated AML after cessation
of therapy. These cases, when achieve long-term molecular (MRD-
negative) remission, are likely to be cured, even though the
persistence of detectable copies of the DNMT3A mutant (indicat-
ing persistent clonal hemopoiesis) may expose them to a low risk
of developing a second AML [4].

Antibodies against CD33 and CD123
CD33 is expressed in all stages of myeloid differentiation [119]
and it is detectable in most cases of AML, the expression levels
being high in NPM1-mutated AML [106]. Thus, CD33 is an useful
target for immunotherapy with an anti-CD33 monoclonal
antibody conjugated with a DNA-damaging calicheamicin
derivative (Gemtuzumab Ozogamicin-GO) (Fig. 4). In a metana-
lysis study [120], adding GO to chemotherapy showed a survival
benefit for intermediate-risk cytogenetics and NPM1-mutated
AML patients because of a reduced relapse risk. Similar results
were reported by the ALFA0701 trial that also demonstrated the
impact of GO in reducing NPM1-mut transcripts level [121].
Higher reduction of NPM1-mut transcript levels were also
observed in the GO arm of the AMLSG study that translated
into a lower cumulative incidence of relapse [122]. However, the
AMLSG 09-09 Phase III Study failed to meet the early primary
end point (event-free survival) due to higher early mortality in
the GO arm [123]. Nevertheless, a significant clinical benefit was
observed in females older than 70 years with NPM1-mutated/
FLT3 wild-type genotype [123] in terms of both event-free-
survival and cumulative incidence of relapse. Collectively, the
above studies support the incorporation of GO into the frontline
treatment of NPM1-mutated AML.

Fig. 4 Immunotherapeutic approaches to NPM1-mutated AML. NPM1-mutated AML can be targeted using antibody-drug conjugates (e.g.,
gentuzumab ozogamicin, anti-CD33), immune check-point inhibitors, CAR and TCR-based adoptive T-cell therapies directed against NPM1
mutated epitope/HLA complex. CAR chimeric antigen receptor, TCR T-cell receptor.
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CD123 is highly expressed in NPM1-mutated AML both at
diagnosis and relapse (Fig. 4), the highest expression being
observed in CD34+ CD38− leukemic cells [107]. Moreover, CD123
expression was enhanced by FLT3 mutations, suggesting that the
subset of NPM1/FLT3 double-mutated AML patients could
particularly benefit from anti-CD123 targeted therapies [107]. So
far, tagraxofusp (SL401) which is formed by the fusion of IL-3 with
diphtheria toxin and the CD123-directed chimeric antigen
receptor (CAR) T cells (MB-102) developed by Mustang Bio Inc.
are approved or received the Orphan drug designation (MB-102)
for the treatment of blastocytic plasmacytoid dendritic cell
neoplasm [124] which strongly expresses CD123. Only scarce
information is available in CD123-positive R/R AML. Main limitation
of these products is myelotoxicity [124].

Antibodies against PD-1 and PD-L1
AML is a poorly immunogenic and highly immune-suppressive
hematological malignancy. High expression of PD-L1 has been
found in NPM1-mutated AML patients, especially in the leukemic
progenitors/stem cell compartment (CD34+ CD38−) [125]. High
PD-L1 expression in blasts of AML with NPM1-mutated/FLT3-ITD
genotype predicted inferior survival [41]. Moreover, in a
comprehensive immunogenomic analysis of AML, mutations of
NPM1 and FLT3 preferentially associated with low T-cell cytolytic
activity and a reduced expression of HLA-II (and/or related
genetic determinants of HLA-II expression, as CIITA) [126].
Interestingly, CIITA methylation may limit antigen presentation
by primary NPM1mutIDH1mut AML blasts through downregulation
of MHC-II, thereby inducing immune evasion [126]. Immune
evasion in NPM1-mutated AML is also contributed by VISTA (V-
domain Ig suppressor of T-cell activation) and ULBP1 (NKG2
ligand) immunoregulatory circuitries that are both significantly
upregulated in NPM1-mutated AML patients [126] (Fig. 4). VISTA-
Ig, which shows a partial homology with other B7 family
members, is predominantly expressed in hematopoietic cells of
myeloid lineage. This circuitry in mainly involved in suppressing
proliferation of T cells and blunting the production of T-cell
cytokines, making it a potential target for immune check-point
blockade combinations [127].
More recently, the anti-PD-1 antibody, nivolumab, was found

to increase leukemia-associated antigen-stimulated cytotoxic
T cells and cytotoxicity against stem cell-like cells, especially
those carrying NPM1 mutations [128]. These findings provide a
rationale for the treatment of NPM1-mutated AML, combining
anti-PD-1 and anti NPM1-mutation specific immunotherapy (see
below). Moreover, targeted immune gene expression and
multiplexed digital spatial profiling showed distinct AML
immune microenvironments [129]. The immune-infiltrated micro-
environment that was characterized by severe immune suppres-
sion (high expression of PD-L1, CTLA4, IDO1 and BTLA), higher
dependence from IFN-γ driven adaptive immune responses,
high T-cell infiltration and expression of major histocompatibility
complex, closely clustered with the adverse-risk genetic AML
categories (specifically, TP53 and RUNX1 mutated AML) [129].
Conversely, the NPM1-mutated cases (with or without FLT3-ITD)
more frequently showed an immune-depleted microenvironment
[129]. Finally, NPM1-mutated AML harboring concomitant clonal
hematopoiesis driven mutations (e.g., DNMT3A, TET2) showed an
enriched tumor inflammation signature score, predicting a
clinical benefit from anti-PD-1 treatment [130]. This finding is
in keeping with the observation linking in a mouse model a
persistent immune stimulation to an accelerated NPM1mut

myeloproliferative phenotype in vivo [131].
Although the above findings suggest that NPM1-mutated AML

may be a potential candidate for immune check-point inhibition
(Fig. 4), the few studies performed so far with anti-PD-L1
antibodies in AML patients have shown only modest clinical
activity. Their impact has been evaluated also in combination with

hypomethylating agents [132–134], since they induce the expres-
sion of several immune-related genes, including HLA-I and HLA-II,
leukemia-associated antigens (e.g., PRAME, WT1) [135], PD-1 and
PD-L1 [136]. Despite most studies did not specifically evaluate
NPM1-mutated AML, they showed that patients who might benefit
more from these drug combinations are those who are naïve for
hypomethylating agents or have <20% blasts and a higher pre-
therapy infiltration of bone marrow by CD3+, CD4+ Teff, and
CD8+ T cells [132]. The clinical trial NCT03769532 is currently
evaluating the safety/efficacy of pembrolizumab plus 5-azacitidine
in NPM1-mutated AML patients. The impact of pembrolizumab
200mg (i.v. on day 14) has been assessed also in association with
high-dose cytarabine in 37 R/R AML patients (9/37, 24%, bearing
NPM1 mutations) [137]. The overall response rate, composite CR
rate and median OS were 46%, 38% and 11.1 months, respectively.
Responding patients exhibited a higher percentage of progenitor
exhausted TCF1+ CD8+ T cells and an increased diversity of the
T-cell receptor at baseline [137].
As previously mentioned, venetoclax is very active in NPM1-

mutated AML [70]. This effect is also contributed by the
immunomodulatory effect of the drug that enhances the T-cell-
mediated anti-leukemic response by increasing reactive-oxygen
species (ROS) production [138] and increases the PD1+ T-effector
memory cells and anti-tumor efficacy in combination with
immune check-point blockade [139]. The NCT02397720 trial is
assessing the combination of nivolumab, azacytidine and vene-
toclax in frontline and R/R AML, while the NCT04284787 trial is
assessing the impact of pembrolizumab plus azacytidine and
venetoclax in newly diagnosed AML patients unfit for conven-
tional chemotherapy.

CAR and TCR engineered T cell therapy
CAR T cells or T-cell receptor (TCR) gene therapy could be
promising approaches against NPM1-mutated AML. Immune
targeting can be distinguished into: (1) HLA-dependent therapies
relying on the presentation of NPM1 neoantigen [113]; or (2) HLA-
independent therapies identifying molecules differentially
expressed on leukemic cells relative to normal cells (tumor-
associated antigens).
Searching for HLA class I ligandome of primary AMLs, multiple

ΔNPM1-derived immunogenic peptides, have been identified,
including AIQDLCLAV, AIQDLCVAV, CLAVEEVSL, LAVEEVSLR,
AVEEVSLRK 9-mer, and CLAVEEVSLRK 11-mer, representative of
the more common NPM1 mutation types. These peptides are able
to efficiently bind to at least most common HLA types (A*02:01,
A*03:01) which are often detected in the Caucasian population
[111–115, 140–142]. Using yeast surface display, a human single-
chain variable fragment (scFv) that specifically identifies the NPM1
mutant epitope/HLA-A2 complex but not HLA-A2 or HLA-A2
loaded with control peptides was generated and used to construct
CAR T cells (Fig. 4). These engineered cells showed strong in vitro
and in vivo activity against preclinical models of NPM1-mutated
AML cells carrying NPM1-mutant/HLA-A2 complex but not against
NPM1 wild-type/HLA-A2+ AML cells or HLA-A2 negative tumor
cells [140]. More recently, memory-like NK cells armed with the
same neoepitope-specific CAR showed strong activity against
NPM1-mutated AML in absence of toxicity [143].
CD123 and CD33 are strongly expressed both in NPM1-mutated

AML cells and healthy tissue. Thus, aiming to improve selectivity
for leukemic cells while minimizing toxicity towards normal cells, a
dual targeting model was exploited through Cytokine Induced
Killer (CIK) cells co-expressing a first-generation low affinity anti-
CD123 and an anti-CD33 as costimulatory receptor without
activation signaling domains. This trans-signaling strategy could
allow: i) low toxicity profile against CD123+ endothelial cells and
HSPC, due to a reduced cell activation given by the suboptimal
first-generation CAR signal; ii) no or low myelotoxicity against
CD33+ HSPC cells, due to absence of CIK cell activation upon the
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sole costimulatory signal engagement; and iii) full CAR-CIK
activation only against double expressing CD123+/CD33+
leukemic cells [144] (Fig. 5).
Specific T cells for HLA-A*02:01-binding CLAVEEVSL have been

searched in healthy individuals using peptide-HLA tetramers.
Tetramer-positive CD8+ T cells were isolated and their activity
towards primary AMLs investigated. The TCR was then isolated
from a clone with high anti-leukemic reactivity and its capability to
specifically recognize and lyse HLA-A*02:01-positive ΔNPM1 AML
demonstrated after retroviral transduction of CD8+ and CD4+
T cells [145]. Moreover, T cells transduced with TCR for HLA-
A*02:01-binding CLAVEEVSL efficiently killed AML cells and
prolonged OS of NSG mice engrafted with HLA-A*02:01-positive
NPM1-mutated OCI-AML3 human cells [145] (Fig. 4). Thus,
CLAVEEVSL is a neoantigen that can be efficiently targeted on
AML by ΔNPM1 TCR gene transfer. While such TCR gene-
engineered T-cell therapy prove to be potent and safe, it must
match the TCR haplotype restriction to HLA-A*02:01-positive
patients, representing around 40% of Caucasian population.
Moreover, HLA class I downregulation or loss of neoantigen
expression could be a possible mechanism of immune escape
from NPM1-mutated TCR gene-engineered T-cell therapy.
DLI using T cells derived from healthy donors and specifically

directed against the NPM1-mutated neoantigen with the aim to
elicit graft-versus-leukemia may be a therapeutic option in
patients experiencing molecular relapse following allogeneic
HSCT. Eliciting endogenous immune responses through vaccina-
tion with NPM1 neoantigens is unlikely to be effective in patients
with high-burden newly diagnosed or relapsed AML but could be
of benefit, possibly in combination with immune check-point
inhibitors, to treat pre-emptively NPM1-mutated AML with
persistent NPM1 transcripts or in molecular relapse.

FUTURE PERSPECTIVES
Molecular mechanisms underlying NPM1-mutated AML are still
poorly understood. Endogenous tagging of wild-type and
mutated NPM1 proteins followed by mass spectrometry may

unravel their interactions with other partners and functions in the
cytoplasm. How NPM1 mutants deregulate the HOX program
remains also to be better defined. Moreover, all current
experimental data are based upon the analysis of OCI-AML3 and
IMS-M2 human AML cell lines that both carry the most frequent
NPM1 mutation (i.e., mutation A). Whether similar results can be
extended also to the rarer NPM1 variants remains to be
determined. Clarifying these issues may lead to the development
of new targeted therapeutic strategies.
Unfit NPM1-mutated AML patients relapsing after venetoclax-

based regimens represent a medical need. The mechanisms of
resistance to venetoclax and its use in combination with other
drugs to prevent relapse should be better investigated. Menin
inhibitors are emerging as the most promising agents for targeted
therapy of NPM1-mutated AML. The ongoing trials will tell us
which is the real impact of these compounds in NPM1-mutated
AML and suggest which are the best combinations to maximize
the clinical benefit. Menin inhibitors, alone or in combination with
venetoclax or other agents, could be incorporated in the
treatment algorithm, as that shown in Fig. 3A, to reduce or
eradicate NPM1-related MRD, possibly as bridge to allo-HSCT, in
eligible patients. Moreover, menin and XPO1 inhibitors have the
potential to be used alone or in combination (e.g., with FLT3
inhibitors), at initial diagnosis, especially in patients who are older
or unfit for intensive chemotherapy.
Identifying novel drugs for NPM1-mutated AML using synthetic

lethality approaches are under way [146]. High-throughput
screening technology [147] allows to screen a large number of
compound libraries at a rate that may exceed a few thousand
compounds per day or per week [148, 149]. Searching for new
molecules able to re-localize or reduce the expression of the
NPM1 mutated protein, we have established a microscopy-based
screening strategy suitable to analyze hundreds selected drugs
and compounds using high-throughput microscope technique
and image analysis (Fig. 6). Among other compounds, we
identified inhibitors with known re-localizing activity on NPM1
mutated protein, thus confirming the value of our experimental
strategy (unpublished data).

CD123+ Healthy cells CD33+ Healthy cells

CD123

CD123/CD33+ AML leukemic cells

CD123 CD33CD33

Low affinity
Anti-CD123 first gen CAR

cis-signalling

Anti-CD33 CCR
cis-signalling

Signal 1
(Attenuated)

Signal 1Signal 2 Signal 2

Reduced Activation

Low toxicity on CD123 low

endothelial cells and HSPCs

No Activation

No/Low toxicity against
CD33+ HSPCs and granulocytes

Full Activation

Specific anti-AML activity

Dual targeting
anti-CD123/CD33
trans-signalling

Fig. 5 Dual CAR targeting of CD33 and CD123. The rationale of CD123/CD33 dual targeting trans-signaling strategy is to induce a full cell
activation against only CD123/CD33+ leukemic cells while reducing cell stimulation against CD33+ HSPCs and CD123+ endothelial cells [144].
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