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Pediatric T-ALL type-1 and type-2 relapses develop along
distinct pathways of clonal evolution
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The mechanisms underlying T-ALL relapse remain essentially unknown. Multilevel-omics in 38 matched pairs of initial and relapsed
T-ALL revealed 18 (47%) type-1 (defined by being derived from the major ancestral clone) and 20 (53%) type-2 relapses (derived
from a minor ancestral clone). In both types of relapse, we observed known and novel drivers of multidrug resistance including
MDR1 and MVP, NT5C2 and JAK-STAT activators. Patients with type-1 relapses were specifically characterized by IL7R upregulation.
In remarkable contrast, type-2 relapses demonstrated (1) enrichment of constitutional cancer predisposition gene mutations, (2)
divergent genetic and epigenetic remodeling, and (3) enrichment of somatic hypermutator phenotypes, related to BLM, BUB1B/
PMS2 and TP53 mutations. T-ALLs that later progressed to type-2 relapses exhibited a complex subclonal architecture,
unexpectedly, already at the time of initial diagnosis. Deconvolution analysis of ATAC-Seq profiles showed that T-ALLs later
developing into type-1 relapses resembled a predominant immature thymic T-cell population, whereas T-ALLs developing into
type-2 relapses resembled a mixture of normal T-cell precursors. In sum, our analyses revealed fundamentally different mechanisms
driving either type-1 or type-2 T-ALL relapse and indicate that differential capacities of disease evolution are already inherent to the
molecular setup of the initial leukemia.
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INTRODUCTION
Relapse is the main cause of death from pediatric acute precursor
T-cell leukemia (T-ALL) [1, 2], but the underlying mechanisms of
disease evolution from initial disease to relapse remain incom-
pletely understood and show a remarkable interpatient hetero-
geneity. The acquisition of mutations and epigenetic
modifications represent important components of this process
[3–7]. Specifically, activating mutations of the nucleosidase NT5C2
are acquired by app. 20% of patients at relapse [8–10]. These
mutations are predicted to confer chemotherapy resistance but
are often found to be subclonal [10]. TP53 mutations occur in-app.
12% of relapses and predict a high risk of treatment failure and

fatal outcome [11–13]. Although prevalent at T-ALL relapse [14]
and correlated with an increased cumulative incidence of relapse
[15], RAS-MAPK pathway-activating mutations were reported both,
in clones that are eradicated and in those that emerge at relapse
at the same time rendering lymphoblasts resistant against
methotrexate, while sensitizing them to vincristine [4]. Similarly,
NOTCH1 activating mutations, which enhance proliferation and
survival [16] have recently been reported to be frequently
acquired at later T-ALL stages thus highlighting the importance
of NOTCH1-activation for T-ALL progression [17].
We have previously described two types of T-ALL relapses,

characterized either by the clonal evolution of the major clone
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present at the time of initial presentation (type-1) or by the
emergence and evolution of a minor ancestor clone showing a
molecular profile that is distinct from the predominant initial clone
(type-2) [3].
As cross-sectional genomic and transcriptomic studies failed to

identify unifying biological determinants of relapse, we now
adopted a longitudinal strategy and performed multi-level omics
analyses in 13 matched pairs of initial diagnosis and relapse
samples and their corresponding patient-derived xenografts (PDX)
models. We extended this sample set by whole-exome sequen-
cing (WES) and methylome analyses in an additional cohort of 25
matched sets of DNA samples obtained from primary patient cells
collected at initial diagnosis, remission, and relapse.

MATERIAL AND METHODS
Patients
The primary cells were obtained from patients recruited in ALL‐BFM 2000,
ALL‐BFM‐2009, CoALL97, CoALL03, CoALL09, and ALL‐REZ BFM 2002 trials
or from Schneider Children’s Medical Center of Israel from the time points
of first diagnosis, remission, and relapse (Supplementary Table 8). Of the 38
patients described here some details of 13 patients were previously
reported [3].
Clinical trials from which samples were used in this analysis had

previously received approval from the relevant institutional review boards
or ethics committees. Written informed consent had been obtained from
all the patients or legal guardians, and the experiments conformed to the
principles set out in the WMA Declaration of Helsinki and the Department
of Health and Human Services Belmont Report.

Whole-exome and ATAC sequencing
WES and ATAC-Seq were performed as described before [18, 19] - for
details see Supplementary Materials.

Analysis of cancer predisposing genes
We generated a list of 227 potential CPG (Suppl. Tab. 9) by combining
previously reported tumor suppressors or genes involved in DNA repair
[20–24]. Sixty-two remission samples (day 33) from 38 patients who later
developed a relapse and from 24 who did not relapse were subjected to
WES. Of the constitutional variants (AF ≥30%) we focused exclusively on:
stopgain/loss, frameshift InDels, splicesite donor/acceptor in 227 CPGs.

DNA methylation analysis using 450k BeadChip Arrays and
Infinium® MethylationEPIC BeadChip Arrays
Bisulfite‐conversion, analysis on the Infinium® Methylation assay and EPIC
assay (Illumina) and downstream analysis using the RnBeads software
package [25] were performed as reported before [19].

Software and bioinformatical tools
For graphical representation and statistical analyses, GraphPad and R [26]
were used. R packages: DESeq2, DNA copy, ggplot2, reshape2, scales.
Graphical abstract was created with BioRender.com.

RESULTS
Clonal selection in type-2 T-ALL relapses is coupled with a
high degree of heterogeneity and an increase of mutation
load at relapse
Based on the profile of single nucleotide variants (SNV) and
insertions/deletions (InDels) (Fig. 1) generated by WES of all 38
patients who were analyzed at the time of initial diagnosis,
remission, and relapse we distinguished 18 (47%) patients with
type-1 relapses as defined by all clonal mutations with allele
frequencies (AF) >30% being preserved at relapse. In 20 (53%)
patients with type-2 relapses the major clone present at initial
diagnosis was eradicated as defined by a subset of clonal
mutations with AF >30% being lost in the relapse [3]. CNA/CN-
LOH (copy number alterations/copy-neutral loss of heterozygosity)
analyses showed a loss of CNA/CN-LOH profiles detected during

initial disease in 9/20 type-2 relapses, confirming the loss of the
major clone in these patients (Supplementary Fig. 1). By contrast,
no losses of CNA/CN-LOH profiles were observed among type-1
relapses.
Whereas leukemias relapsing as type-1 preserved most of the

coding mutations (306/337; 91%) detected at initial diagnosis,
type-2 leukemias preserved only 51% (181/356; Fig. 2A). Moreover,
the number of mutations acquired at the time of type-1 relapse
was significantly lower when compared to type-2 (type-1: mean ±
SEM: 10.94 ± 1.677 N= 18; vs. type-2: mean ± SEM: 33.05 ± 7.636
N= 20; p= 0.01 (ttest, unpaired)) indicating that type-2 T-ALLs
underwent stronger genomic remodeling on the way to relapse
(Fig. 2B). A substantial increase in the mutational load in type-2
relapses was particularly evident in three patients: P1, P8, P18
(Fig. 2C), who carried more than 85 coding mutations at the time
of relapse. This remarkable accumulation of mutations was likely
caused by gains of mutations in the Bloom RecQ helicase (BLM;
P18), simultaneous mutations in the mitotic checkpoint serine/
threonine-protein kinase (BUB1B) and the mismatch repair
endonuclease PMS2 (P8), and in TP53 (P1), respectively. P18
(BLM) and P8 (BUB1B/PMS2) acquired the highest numbers of
somatic deletions (Supplementary Fig. 2a), and an analysis of the
mutation context suggests a dominant contribution of Cosmic
Mutational Signature 6, which is indicative of defective DNA
mismatch repair or microsatellite unstable tumors (Supplementary
Fig. 2b). Remarkably, the fraction of subclonal mutations of those
T-ALLs that later developed into a type-2 relapse was significantly
higher already at the time of initial diagnosis than in those T-ALLs
that later developed into a type-1 relapse (type-1: 131/337 (39%);
type-2: 167/356 (47%), p= 0.0387; Fisher’s exact), a difference that
became even more pronounced at the time of relapse (type-1:
153/504 (30%); type-2: 431/842 (51%)); p < 0.0001; Fisher’s exact;
Fig. 2D). These findings suggest fundamental biological differ-
ences between these types of T-ALLs already at the time of the
initial disease, which become even more apparent at the time of
relapse. These divergently developing genomic changes are
paralleled by a trend towards a longer time to relapse in type-2
than in type-1 patients (p= 0.0896 (Mantel-Cox test); Fig. 2E).
We next analyzed the mutation spectrum (Fig. 2F) in the entire

group of 38 patients according to relapse type. The most frequent
were NOTCH1 mutations (N= 48) found in 21 patients. Of these
only patients relapsing with type-1 preserved all the NOTCH1
mutations detected with an AF >30% at the time of initial
diagnosis (N= 9 patients). The majority of the lost (11/12) and
gained (12/14) NOTCH1 mutations were detected in type-2 relapse
(Supplementary Table 1). However, this pattern was also observed
for variants of other genes thus not implicating NOTCH1 as a
specific driver of either of the types of relapse. Activating
mutations of cytosolic 5′-nucleotidase II (NT5C2) occurred in 6/
18 type-1 and 8/20 type-2 relapses and in none of the initial
diagnosis samples, thus confirming the frequent acquisition of
NT5C2 mutations in T-ALL relapses [8–10]. Seven of these
mutations were gain-of-function variants at position R367 and
two at R238 (for the remaining see Supplementary Tab. 1). Six
mutations carried by 5 of these 14 patients (4 type-1 and 1 type-2)
were subclonal (AF < 30%). RAS mutations occurred in 4/18 type-1
and in 5/20 type-2 T-ALLs, both at the time of initial and/or
relapsed disease. TP53 mutations occurred at relapse in 1/18 type-
1 and in 2/20 type-2 T-ALLs. In one of these patients, the TP53
mutation was traced back to the initial diagnosis sample where it
was detected with a low AF of 5% (3/58 reads). These findings
indicate that the leukemogenic mechanisms that are activated by
these mutations are shared between both types of relapses.

Constitutional mutations in cancer predisposition genes are
enriched in T-ALL patients with a type-2 relapse
Because of the growing evidence for the role of predisposing
constitutional variants that contribute to approximately 10% of all
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Fig. 1 Allele frequency analysis of mutations reveals clonal evolution on the way from initial T-ALL to either type-1 or type-2 relapse.
Scatter plots of allele frequency (AF) of mutations detected at initial diagnosis (INI, x-axis) and relapse (REL, y-axis). Type-1 relapses are defined
by all clonal mutations with allele frequencies (AF) > 30% being preserved at relapse; in type-2 relapses, the major clone present at initial
diagnosis is eradicated as defined by a subset of clonal mutations with AF > 30% being lost in the relapse. BC= blast content at the time of
relapse; dashed red line – 30% allele frequency threshold for clonal (AF ≥ 30%) and subclonal (>30%) mutations; color code: NOTCH1/3 –
green, FBXW7 – orange, NRAS/KRAS – red, IL7R/JAK/STAT pathway – yellow, PI3K pathway – violet, ribosomal genes – pink, chromatin
modifiers – blue, the remaining mutations are labelled in grey; red frames indicate those patients in whom CNA analysis confirmed type-2
relapse. P4REL – because of the blast content of only 8% the leukemia cells isolated from the relapse, PDX of this patient was used for
classification, which demonstrated this relapse to be of type-1; P32 – the mutations lost at relapse had very low coverage; P2 – low blast
content at initial diagnosis; the CNA pattern together with the analysis of corresponding PDXs suggests a type-2 relapse.
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pediatric malignancies [20, 21, 27, 28] we analyzed matched
remission samples (collected at day 33 of treatment) for inherited
variants in 227 known cancer predisposition genes (CPG)
compiled from previously reported studies [20, 22–24, 29] and
those analyzed by the PCAWG (pan-cancer analysis of whole
genomes) network [30]. In 7/20 type-2 patients we detected nine
constitutional heterozygous variants (AF ≥30%) predicted to be
deleterious or disruptive for splicing (nonsense- frameshift and
splice site mutations) in genes associated with DNA repair (CHEK2,
ERCC2/3, SPRED1, GTF2H3, RFC3, POLR2L) and in tumor suppressor
genes (VHL, FBXW7). Constitutional mutations in these genes are
associated with cancer predisposition syndromes [20–22, 24]. By
contrast, such constitutional variants were not identified in any of
the type-1 patients (type-1 vs. type-2; 0/18 vs. 7/20; p= 0.0087;
Fisher's exact test, two-tailed). None of the patients carrying
constitutional cancer predisposition mutations exhibited a somatic
hypermutator phenotype. In order to assess the role of constitu-
tional CPG mutations (Supplementary Table 8) in conferring a
higher risk of relapse we compared the frequency of CPG

mutations in remission samples of the relapsing patients with
patients who did not develop a relapse. These data did not
indicate a significantly difference between these groups. Similarly,
a comparison of the frequency of constitutional inactivating
mutations in cancer predisposition genes (Supplementary Table 8)
between the non-cancer gnomAD cohort (v2.1.1 [31]) and T-ALL
patients showed an even distribution (see Supplementary Results
for details). These data indicate that CPG mutation shape the
evolution of a relapse towards type-2 instead of type-1 but do not
increase the overall risk of developing a T-ALL or a T-ALL relapse.
We hypothesize that these mutations favor the accumulation of
DNA damage under conditions of genotoxic stress such as
chemotherapy. Unfortunately, the incompleteness of clinical data
and family histories on secondary malignancies precluded a
systematic analysis of the association with hereditary cancer
predisposition. However, the development of mutational inactiva-
tion of a tumor suppressor in a patient with tumor predisposition
could be monitored particularly well in P27, who presented with
a simultaneous Wilms tumor at the time of initial diagnosis.
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This patient carried a constitutional previously unknown frame-
shift mutation of FBXW7 (Met587ArgfsTer41; chr4:152324250). In
T-ALL, inactivation of FBXW7 is a common cause for activation of
NOTCH1-pathway and other oncogenic clients such as MYC [18].
The sample collected at initial diagnosis of T-ALL exhibited
LOH of FBXW7 in addition to the constitutional frameshift
mutation (Supplementary Fig. 3), whereas at the time of relapse
that occurred unusually late 913 days after the initial diagnosis
this T-ALL had acquired a second, somatic missense mutation
(c.1033A > G; p.T345A) in proximity to the known hotspot (R347).
Samples of the patient’s parents and siblings were not available,
nor was a sample representing the synchronous Wilms tumor.
We next asked whether constitutional inactivation of FBXW7
might be a common predisposing mechanism in T-ALL and
screened 51 remission samples of T-ALL patients in whom we had
previously found a somatic FBXW7 mutation [18]. Sanger
sequencing of exons 9 and 10 of FBXW7 did not identify
constitutional mutations in any of these patients, indicating
that constitutional loss of FBXW7 function is not common in
pediatric T-ALL.

Transcriptomic and epigenomic profiles of T-ALL are
determined by the leukemogenic fusion gene and are
preserved between initial diagnosis and relapse
Of the total set of 38 matched pairs of initial diagnosis and relapse,
we expanded matched samples of 13 patients in PDX thus
enabling us to obtain suitable material (RNA and leukemic cells)
for multi-omic analyses (Supplementary Table 2). Of the 12
patients with available mRNA data, 5 were classified as cortical T-
ALL, two as mature, two as pre-T, one as pro-T and two as a mixed
cortical-T/pre-T (detailed FACS and immunophenotype profiles in
Supplementary Table 3). None of the patients was classified as
early thymic progenitor (ETP)-ALL, however at the time of
diagnosis of some of the patients the high-risk ETP-ALL subtype
had not yet been described. Moreover, some expression features
resembled those of early thymocytes by high expression of CD34,
SPI1 or KIT (Supplementary Fig. 4, Supplementary Table 3). Five of

13 patients developed a type-1 and 8 a type-2 relapse. As
previously shown directly, early passages of T-ALL PDXs that were
used here preserve the genomic and epigenomic profiles and the
subclonal architecture of the primary patients’ leukemias with
high fidelity [19, 32]. Based on ectopic expression of known T-ALL
drivers, we classified this subset of 13 patients into the following
subgroups: TAL1/2 (n= 5), TLX1/3 (n= 3), HOXA (n= 2), NKX2‐4/5
(n= 2), and LMO2 (n= 1; Fig. 3A). Unsupervised learning
approaches clustered all 26 samples (obtained at diagnosis and
relapse) according to the driving fusion indicating that these are
the strongest factors determining the transcriptomic (Fig. 3A),
methylation (Supplementary Fig. 5) and chromatin accessibility
profiles (Fig. 3B). At the same time, the overall gene expression,
methylation, and chromatin accessibility profiles of the initial and
relapsed T-ALLs of individual patients were largely retained
following the evolution to relapse (Fig. 3; Supplementary Fig. 5).
This similarity is also reflected by differential transcriptomic
analyses between initial diagnosis and relapse identifying only
0.13% (43/32 529) genes to be significantly up- or downregulated
at relapse (DESeq2; padj <0.05; Supplementary Tab. 4a/b).
Similarly, analyses by ATAC-Seq revealed significant changes of
the chromatin accessibility profile in only 0.53% (557/105 136)
of the analyzed ATAC-peaks (DESeq2, padj < 0.05; Supplementary
Table 4c/d). Likewise, significant changes on the way to relapse
were neither identified in promoter methylation profiles
(RnBeads [25]; Supplementary Table 5). The methylation data
were further used for classification into either CIMP+ or CIMP– as
described previously [33] (Supplementary Fig. 6). These analyses
demonstrate that (1) the CIMP status does not change during the
transition from initial diagnosis to relapse in majority of the
patients (19/23) and (2) does not differ in its distribution between
type-1 (5 CIMP–; 6 CIMP+) and type-2 relapses (8 CIMP–; 5 CIMP
+). These data indicate that in a cross-sectional or longitudinal
approach not considering the type of relapse any relapse-specific
alterations in the transcriptomic and epigenomic profiles are
masked by the interpatient heterogeneity and by the dominant
fusion genes driving the leukemogenesis.
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Relapse specific differences at the epigenomic and
transcriptomic level develop in type-2 relapses while type-1
relapses resemble the profiles of the initial disease
We next tested whether relapse-specific changes may be
unmasked when separately analyzing leukemias that developed
into either a type-1 or a type-2 relapse. As detailed above for the
entire set of 38 patients, we confirmed in 13 matched pairs of
initial diagnosis and relapse expanded in PDX-mice that type-2
relapses acquired significantly more mutations (p= 0.01 (t test,
unpaired), Fig. 2A) and are characterized by a higher degree of
subclonal complexity than type-1 relapses (Fig. 2D). The analysis of
the multi-omics set of 13 patients revealed that the stronger
remodeling on the way to type-2 than to type-1 relapses was also
reflected by a more complex evolution of epigenetic changes in
type-2 relapses. Specifically, when analyzing the methylation
profile of the promoters, we observed an almost 10-fold higher
mean difference in β value when comparing the initial disease and

relapse in type-2 (0.002) with type-1 (0.00034) (p < 0.0001, Chi-
square test). When analyzing chromatin accessibility, the number
of differentially accessible ATAC-peaks was only 14 (0.013%) in
type-1 but 852 (0.81%) in type-2 (p < 0.0001, Chi-square test;
Fig. 4A). A similar difference was observed at the transcriptomic
level with only 1 gene being differentially expressed in type-1 and
152 genes in type-2 (p < 0.0001, Chi-square test; Fig. 4A,
Supplementary Table 6).
We next mapped the T-ALLs to the most closely related

maturation stages of thymic T-cell precursors by employing
recently reported profiles of chromatin accessibility obtained by
ATAC-Seq [19, 34]. Thus, we trained the CIBERSORT algorithm [35]
on the signature of 2,823 chromatin regions selected to
distinguish five differentiation stages (DN2, DN3/ISP, DPCD3–/
DPCD3+, CD4+, CD8+) of healthy T-cell precursors [34]. The
signature regions differentially accessible in maturation stages
were enriched for binding motifs of transcription factors that are
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highly expressed in T-cell precursors, which indicated a match
between chromatin accessibility (ATAC-Seq) and gene expression
(RNA-Seq). Deconvolution analyses of the T-ALLs obtained at the
time of first diagnosis and at relapse revealed that at relapse and
even at the time of first diagnosis type-1 leukemias were more
homogeneous predominantly resembling a single immature
normal T-cell population, whereas the pattern of the type-2
leukemias was more complex resembling a mixture of healthy
T-cell precursor populations already at the time of the initial
disease (Fig. 4B, p < 0.01, Mann-Whitney test; Fig. 4C). These data
show that relapse type-specific differences at the epigenomic and
transcriptomic level are already apparent at the time of first
diagnosis and that relapse-specific changes largely develop in
type-2 relapses, whereas type-1 relapses are essentially identical to
the profiles of the initial disease.

Profiles of disease progression and drug resistance in type-1
and type-2 T-ALLs
We next interrogated the epigenomic and transcriptomic data sets
of the 13 T-ALLs that could be propagated in xenografted mice for
shared and differential profiles in the 5 type-1 and the 8 type-2 T-
ALLs (the molecular profiles are summarized in Fig. 5A). We
performed differential analyses of the mutation spectrum, RNA-
Seq and ATAC-Seq data (DESeq2, p < 0.05) of the initial disease
and relapse samples both globally and separately for each of the
13 patients (Suppl. Tab. 7). In 4/13 patients (2 type-1 and 2 type-2)
we detected increased mRNA expression (Supplementary Table 4a)
of multidrug resistance gene 1 MDR1 (ABCB1) both at the time of
initial disease and relapse. In another two patients we observed an
at least two-fold upregulation of the MDR1 gene expression at
relapse (Fig. 5A; Supplementary Table 4a). MDR1 is known to
confer in vitro resistance to many drugs used in the treatment of
acute leukemia such as the anthracyclines, vincristine, vinblastine,
and methotrexate [36]. Additionally, we identified a relapse-
specific 6-fold upregulation of the major vault protein (MVP) gene
in two patients whose relapse was classified as type-2. In patient
P2 the MVP normalized read count increased from initial disease

to relapse from 138 to 800 and in P10 from 409 to 2464 (mean of
all patients: 594; median: 416; SD: 493). MVP is involved in
nucleocytoplasmic transport and has been reported to be
overexpressed in multi-drug resistant solid tumors [37]. These
findings, together with the recurrent gain of function mutations of
NT5C2 reported previously and shown above, indicate that both,
in type-1 and type-2 T-ALL relapses, expression of drug resistance
genes contribute to the frequent treatment resistance and poor
prognosis. In the set of 13 initial disease/relapse pairs TAL1-driven
T-ALLs were exclusively identified in those patients developing
type-2 relapses (4/8 type-2 vs. 0/5 type-1; p= 0.1; Fisher's exact
test, two-tailed) suggesting that TAL1 may play a specific role in
type-2 T-ALL relapses (Fig. 3, Fig. 5), although clearly this trend will
have to be validated in a larger number of samples. Functional
enrichment analysis of the most recurrently upregulated genes
(N > 5) showed enrichment in the regulation of the JAK-STAT
cascade. At relapse, 11 of the 13 patients show upregulation of at
least one of the SOCS1/2/3, which regulate the JAK-STAT pathway
via negative-feedback loop confirming previous reports [38–40]
that the activation of this protooncogenic pathway is common in
T-ALL. Notably, however, overexpression of the IL7R gene was
limited to the 5 patients with type-1 relapses, only in one it was
correlated with the presence of an activating IL7R gene mutation.
In addition to the overexpression of the IL7R itself, the functional
role of this pathway was indicated by the overexpression of other
genes involved in its regulation and by the overexpression of MYC,
the cell cycle regulator cyclin D2 and the anti-apoptotic member
of the Bcl-2 family MCL1 (Supplementary Fig. 7).

DISCUSSION
Because most intensive chemotherapy regimens in pediatric T-cell
leukemia have reached the limit of tolerability, current research
efforts are focusing on stratifying treatment intensity according to
risk. While several genetic parameters determining risk are known
for precursor B-ALLs [41], risk stratification of T-ALL is still largely
based on the kinetics of treatment response [42]. Furthermore,
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there are currently no established specific molecular targets in
T-ALL which can be exploited for therapy. Patients with T-ALL are
therefore likely to particularly benefit from a detailed under-
standing of the biology of the disease and the mechanisms that
govern relapse.
We have previously reported that T-ALL relapses can be

classified as either type-1, characterized by the major clone
present at the time of initial disease evolving by acquiring
additional mutations, or type-2, which is characterized by the
major clone of the initial disease having been eradicated and the
relapse having evolved from a minor ancestral clone [3].
Approximately half of the T-ALL patients who suffer from a
relapse can be classified as either type-1 or type-2, respectively.
We show here that on the path from initial disease to type-1
relapse, T-ALLs tend to remain stable in their mutational
spectrum, promoter methylation, chromatin accessibility and
gene expression profile. In contrast, type-2 T-ALL relapses are
characterized by intensive remodeling as indicated by an increase
in mutational load, changes in DNA methylation, chromatin
accessibility and in gene expression. It is important to note that
these differences only became apparent when patients were
classified according to their disease evolution during progression,
whereas they remained masked when analyzing type-1 and type-
2 T-ALL relapses together. It has been an unexpected finding, that
fundamental differences in genomic, epigenomic and transcrip-
tomic profiles between T-ALLs that will relapse as either type-1 or
type-2 are already apparent at the time of first diagnosis.
Specifically, T-ALLs later evolving into type-1 relapses show a
more homogeneous subclonal architecture and chromatin
maturation profiles. An important finding of this study is that
constitutional mutations in tumor suppressor genes and in genes
involved in DNA repair likely contribute to the genetic instability
and accumulation of mutations of leukemias that develop into
type-2, but not type-1 relapses. While the analysis of probands
reported not to develop malignancies or of T-ALL patients who
did not develop a relapse showed that the carrier status for these
mutations is neither associated with a significantly increased risk
of developing a T-ALL nor of a T-ALL relapse, these mutations
implicated in cancer predisposition, likely shape the type of
relapse following exposition to leukemogenic stimuli and to
genotoxic treatment. Type-1 relapses are characterized by early
progression and occur in leukemias that already at the time of
initial diagnosis are equipped with mechanisms driving treatment
resistance. This is particularly apparent in three patients (P13, P25,
and P32), who not only preserved almost all the mutations
detected at initial diagnosis but did not acquire additional
mutations at the time of relapse. Type-2 relapses, by contrast
tend to develop later, the leukemia requiring more extensive
genetic and epigenetic remodeling of a subclone of the initial
disease, a process that appears to be facilitated by constitutional
mutations in cancer predisposition genes. It must be noted that
the genomic analyses performed here do not fully explain all
differences between T-ALL at diagnosis and at relapse. Specifi-
cally, some of the type-2 relapses display a substantially different
spectrum of variants when compared to the samples obtained at
the time of initial diagnosis. By contrast, these samples do not
show equally substantial differences at the epigenomic and
transcriptomic level. This observation suggests that many variants
may not or only marginally contribute to the driving of the
leukemia. Future single cell analyses may provide insight into the
specific role of some variants to the biology of the leukemia. With
the analysis of a larger number of matched leukemia pairs, we
expect that our classification may be updated to a version with
more subtypes, for example possibly specifying those that have
neither gained or lost mutations during the transition from
diagnosis to relapse.

The type-specific and longitudinal analysis of individual patients
we performed here revealed shared and type-specific profiles that
develop during the transition from initial disease to relapse
(Fig. 5B). Both types of relapse share the recurrent acquisition of
NT5C2 mutations at relapse, therefore confirming previous reports
implicating this mutation as a common relapse-specific mechan-
ism of drug resistance [8–10]. In addition to NT5C2, drug resistance
has likely been induced in two type-1 and in two type-2 patients
with high expression of MDR1. Overexpression of this gene has
previously been reported to cause resistance to drugs used in the
treatment of acute leukemia via ATP-dependent drug efflux [36].
At the time of relapse, two further patients exhibited an increased
expression of the MVP mRNA, a gene that is implicated in drug
resistance in solid tumors [43, 44] and which may thus play a
previously unrecognized role in T-ALL. Taken together, these data
indicate that the activity of multidrug resistance genes likely
contributes to the poor prognosis of both types of T-ALL relapses.
When considering type-specific differences, overexpression of

IL7R emerged as a characteristic feature of type-1 leukemias,
remarkably both at the time of relapse and already at the time of
first diagnosis. While only one of the patients analyzed here carries
an activating IL7Rmutation, we observed a possibly compensatory
upregulation of components of the IL7R-JAK-STAT pathway: its
ligand HGF, IL7R itself and of suppressors of cytokine signaling
(SOCS1, SOCS2, SOCS3), which regulate the pathway via a negative-
feedback loop. Suppressors of cytokine signaling were previously
identified as part of a stemness-related molecular signature
signifying unfavorable outcome in acute myeloid and lympho-
blastic leukemia [45]. Gain-of-function mutations in interleukin-7
receptor-α conferring cytokine-independent growth of progenitor
lymphoid cells were first described by Shochat and colleagues
[46, 47] and shown to be involved in human T-cell leukemogen-
esis [48] and drug resistance in T-ALL [49]. Although analyses in
the UK ALL2003 trial showed that an activation of IL7R-JAK did not
confer an adverse prognosis in T-ALL [50], in vitro analysis of
steroid resistance showed an association of IL7R-JAK-STAT
mutations with a strong activation of the downstream oncogenic
MEK-ERK and AKT pathways; thereby inducing a robust anti-
apoptotic response by upregulating MCL1 and BCLXL expression
[49]. Moreover, recent studies in pediatric B-cell precursor (BCP)
acute lymphoblastic leukemia linked high expression of IL7R with
CNS infiltration and relapse [51]. Previous reports suggest that
overexpression of IL7R and the activation of downstream targets
may represent therapeutic targets of either specific antibodies or
small molecule inhibitors such as ruxolitinib [51, 52]. However,
overexpression alone of molecular targets has recently emerged
not to reliably predict treatment response by targeted therapy in
pediatric malignancies [53]. Irrespective of its potential role as a
molecular target, the results reported here implicate activation of
the IL7R pathway as a leukemogenic event that preferentially
occurs in type-1 T-ALL.
In conclusion, the data presented here show that the analysis of

relapse-specific mechanisms in T-ALL is substantially facilitated by
analyzing type-1 and type-2 relapses separately. Specifically, this
work shows shared and type-specific profiles that are already
apparent at the time of diagnosis. These profiles include the
frequent upregulation of the IL7R pathway in type-1 and the
enrichment of constitutional cancer predisposition genes and
hypermutator phenotypes in type-2 relapses.

DATA AVAILABILITY
Sequence data are deposited at the European Genome‐phenome Archive (http://
www.ebi.ac.uk/ega/) under accession number EGAS00001003248. Scripts for the
plots and tables are available in a repository (https://github.com/tobiasrausch/t-all).
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CODE AVAILABILITY
The code for RNA & ATAC alignments, peak calling, read counting etc. is available on
GitHub (https://github.com/tobiasrausch/ATACseq, https://github.com/tobiasrausch/
RNAseq). For further information see Suppl. Materials.
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