Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia

Abstract

By querying metabolic pathways associated with leukemic stemness and survival in multiple AML datasets, we nominated SLC7A11 encoding the xCT cystine importer as a putative AML dependency. Genetic and chemical inhibition of SLC7A11 impaired the viability and clonogenic capacity of AML cell lines in a cysteine-dependent manner. Sulfasalazine, a broadly available drug with xCT inhibitory activity, had anti-leukemic activity against primary AML samples in ex vivo cultures. Multiple metabolic pathways were impacted upon xCT inhibition, resulting in depletion of glutathione pools in leukemic cells and oxidative stress-dependent cell death, only in part through ferroptosis. Higher expression of cysteine metabolism genes and greater cystine dependency was noted in NPM1-mutated AMLs. Among eight anti-leukemic drugs, the anthracycline daunorubicin was identified as the top synergistic agent in combination with sulfasalazine in vitro. Addition of sulfasalazine at a clinically relevant concentration significantly augmented the anti-leukemic activity of a daunorubicin-cytarabine combination in a panel of 45 primary samples enriched in NPM1-mutated AML. These results were confirmed in vivo in a patient-derived xenograft model. Collectively, our results nominate cystine import as a druggable target in AML and raise the possibility to repurpose sulfasalazine for the treatment of AML, notably in combination with chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cysteine biosynthesis pathway gene SLC7A11 is a poor prognostic factor in AML.
Fig. 2: Genetic and chemical inhibition of SLC7A11 has anti-leukemic activity.
Fig. 3: SLC7A11 expression is BRD4 dependent in AML.
Fig. 4: xCT inhibition induces global metabolic rewiring and ROS-mediated cell death.
Fig. 5: Sulfasalazine synergizes with anthracycline-based chemotherapies in AML.

Similar content being viewed by others

References

  1. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia. Blood. 2016;127:53–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17:1086–93.

    Article  CAS  PubMed  Google Scholar 

  4. Shlush LI, Mitchell A, Heisler L, Abelson S, Ng SWK, Trotman-Grant A, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547:104–8.

    Article  CAS  PubMed  Google Scholar 

  5. Ng SW, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540:433–7.

    Article  CAS  PubMed  Google Scholar 

  6. Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Disco. 2017;7:716–35.

    Article  CAS  Google Scholar 

  7. Su A, Ling F, Vaganay C, Sodaro G, Benaksas C, Dal Bello R, et al. The folate cycle enzyme MTHFR is a critical regulator of cell response to MYC-targeting therapies. Cancer Disco. 2020;10:1894–911.

    Article  CAS  Google Scholar 

  8. Jones CL, Stevens BM, D’Alessandro A, Reisz JA, Culp-Hill R, Nemkov T, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell. 2018;34:724–40.e724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24:1859–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Falini B, Brunetti L, Martelli MP. Dactinomycin in NPM1-mutated acute myeloid leukemia. N. Engl J Med. 2015;373:1180–2.

    Article  PubMed  Google Scholar 

  11. El Hajj H, Dassouki Z, Berthier C, Raffoux E, Ades L, Legrand O, et al. Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. Blood. 2015;125:3447–54.

    Article  CAS  PubMed  Google Scholar 

  12. Gout PW, Buckley AR, Simms CR, Bruchovsky N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia. 2001;15:1633–40.

    Article  CAS  PubMed  Google Scholar 

  13. Chung WJ, Lyons SA, Nelson GM, Hamza H, Gladson CL, Gillespie GY, et al. Inhibition of cystine uptake disrupts the growth of primary brain tumors. J Neurosci. 2005;25:7101–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wunderlich M, Mizukawa B, Chou FS, Sexton C, Shrestha M, Saunthararajah Y, et al. AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. Blood. 2013;121:e90–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. TCGA TCGAC. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  CAS  Google Scholar 

  16. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009;113:3088–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu J, Xia X, Huang P. xCT: A critical molecule that links cancer metabolism to redox signaling. Mol Ther. 2020;28:2358–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu X, Cate SA, Dominguez M, Osborn W, Özpolat T, Konkle BA, et al. Cysteine Disulfides (Cys-ss-X) as sensitive plasma biomarkers of oxidative stress. Sci Rep. 2019;9:115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chen J, Lin S, Liu C. Sulfasalazine for ankylosing spondylitis. Cochrane Database Syst Rev. 2014;(11):CD004800.

  20. Yamashita M, Dellorusso PV, Olson OC, Passegue E. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer. 2020;20:365–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, et al. Targeting multiple signaling pathways: The new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther. 2020;5:288.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schaffer SW, Azuma J, Mozaffari M. Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharm. 2009;87:91–9.

    Article  CAS  Google Scholar 

  25. Muri J, Kopf M. Redox regulation of immunometabolism. Nat Rev Immunol. 2021;21:363–81.

  26. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balsat M, Renneville A, Thomas X, de Botton S, Caillot D, Marceau A, et al. Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: A study by the acute leukemia French association group. J Clin Oncol. 2017;35:185–93.

    Article  CAS  PubMed  Google Scholar 

  28. Brunetti L, Gundry MC, Sorcini D, Guzman AG, Huang YH, Ramabadran R, et al. Mutant NPM1 maintains the leukemic state through HOX expression. Cancer Cell. 2018;34:499–512.e499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DiNardo CD, Tiong IS, Quaglieri A, MacRaild S, Loghavi S, Brown FC, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood. 2020;135:791–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Figueiras RDB, Pasanisi J, Joudinaud R, Duchmann M, Sodaro G, Chauvel C, et al. Niche-like Ex Vivo High Throughput (NEXT) drug screening platform in acute myeloid leukemia. Blood. 2020;136:12–3.

    Article  Google Scholar 

  31. Yamasaki Y, Ieiri I, Kusuhara H, Sasaki T, Kimura M, Tabuchi H, et al. Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharm Ther. 2008;84:95–103.

    Article  CAS  Google Scholar 

  32. Lim WS, Tardi PG, Dos Santos N, Xie X, Fan M, Liboiron BD, et al. Leukemia-selective uptake and cytotoxicity of CPX-351, a synergistic fixed-ratio cytarabine:Daunorubicin formulation, in bone marrow xenografts. Leuk Res. 2010;34:1214–23.

    Article  CAS  PubMed  Google Scholar 

  33. Piya S, Mu H, Bhattacharya S, Lorenzi PL, Davis RE, McQueen T, et al. BETP degradation simultaneously targets acute myelogenous leukemia stem cells and the microenvironment. J Clin Invest. 2019;129:1878–94.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Birsen R, Larrue C, Decroocq J, Johnson N, Guiraud N, Gotanegre M, et al. APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica. 2022;107:403–16.

  35. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10:9–17.

    Article  CAS  PubMed  Google Scholar 

  36. Jones CL, Stevens BM, D’Alessandro A, Culp-Hill R, Reisz JA, Pei S, et al. Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II. Blood. 2019;134:389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Locasale JW. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat Rev Cancer. 2013;13:572–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cantor JR, Abu-Remaileh M, Kanarek N, Freinkman E, Gao X, Louissaint A Jr., et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell. 2017;169:258–272 e217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vande Voorde J, Ackermann T, Pfetzer N, Sumpton D, Mackay G, Kalna G, et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci Adv. 2019;5:eaau7314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508:269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Forte D, Garcia-Fernandez M, Sanchez-Aguilera A, Stavropoulou V, Fielding C, Martin-Perez D, et al. Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy. Cell Metab. 2020;32:829–43.e829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pemovska T, Kontro M, Yadav B, Edgren H, Eldfors S, Szwajda A, et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Disco. 2013;3:1416–29.

    Article  CAS  Google Scholar 

  44. Wahl C, Liptay S, Adler G, Schmid RM. Sulfasalazine: A potent and specific inhibitor of nuclear factor kappa B. J Clin Invest. 1998;101:1163–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gasol E, Jiménez-Vidal M, Chillarón J, Zorzano A, Palacín M. Membrane topology of system xc- light subunit reveals a re-entrant loop with substrate-restricted accessibility. J Biol Chem. 2004;279:31228–36.

    Article  CAS  PubMed  Google Scholar 

  46. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014;3:e02523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Huang M, Thomas D, Li MX, Feng W, Chan SM, Majeti R, et al. Role of cysteine 288 in nucleophosmin cytoplasmic mutations: sensitization to toxicity induced by arsenic trioxide and bortezomib. Leukemia. 2013;27:1970–80.

  48. Robe PA, Martin DH, Nguyen-Khac MT, Artesi M, Deprez M, Albert A, et al. Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of Sulfasalazine for the treatment of progressing malignant gliomas in adults. BMC Cancer. 2009;9:372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Otsubo K, Nosaki K, Imamura CK, Ogata H, Fujita A, Sakata S, et al. Phase I study of salazosulfapyridine in combination with cisplatin and pemetrexed for advanced non-small-cell lung cancer. Cancer Sci. 2017;108:1843–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shitara K, Doi T, Nagano O, Imamura CK, Ozeki T, Ishii Y, et al. Dose-escalation study for the targeting of CD44v+ cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205). Gastric Cancer. 2017;20:341–9.

    Article  CAS  PubMed  Google Scholar 

  51. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharm. 1999;57:727–41.

    Article  CAS  PubMed  Google Scholar 

  52. Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 2020;5:e132747.

  53. Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 2020;16:1351–60.

  54. Yusuf RZ, Saez B, Sharda A, van Gastel N, Yu VWC, Baryawno N, et al. Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers. Blood. 2020;136:1303–16.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 2020;368:85–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu K, Li K, Lv J, Feng J, Chen J, Wu H, et al. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Investig. 2020;130:1752–66.

  57. Lanzardo S, Conti L, Rooke R, Ruiu R, Accart N, Bolli E, et al. Immunotargeting of Antigen xCT attenuates stem-like cell behavior and metastatic progression in breast cancer. Cancer Res. 2016;76:62–72.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, et al. Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model. Cell Chem Biol. 2019;26:623–633.e629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Patrick Auberger and Didier Bouscary for helpful discussions, Jean-Michel Cayuela, Carole Albuquerque, Christophe Roumier, and Céline Decroocq from the Saint-Louis and Lille Tumor Banks for primary patient samples; Veronique Montcuquet, Nicolas Setterblad, Christelle Doliger, and Sophie Duchez from the Saint-Louis Research Institute Core Facility; Jean-Marc Massé and Alain Schmitt from the Electronic Microscopy Imaging Facility (‘PIME’) of Institut Cochin; and the technical staff from the DBA (Diagnostic Biologique Automatisé) platform of Saint-Louis Hospital. This work was also supported by the ATIP/AVENIR French research program (to AP), the EHA research grant for Non-Clinical Advanced Fellow (to AP), the Ligue Nationale Contre le Cancer (to AP), the Mairie de Paris Emergences grants (to AP), the INCA PLBIO program (PLBIO20-246, to AP), Fondation ARC (PGA1-RC20180206836 to RI), Association Laurette Fugain (ALF2020-01 to RI), Fondation Leucémie Espoir (to RI), Ligue contre le Cancer – Comité Ile-de-France (RS18/75-15 to RI), Association Princesse Margot (to RI), and the US National Cancer Institute (NCI) (NIH R35 CA210030 to KS). AP is a recipient of support from the ERC Starting program (758848) and supported by the St Louis Association for Leukemia Research. This work was also supported by the Commissariat à l’Energie Atomique et aux Energies Alternatives and the MetaboHUB infrastructure (ANR-11-INBS-0010 grant to FC and FF). This study was funded by grants from Fédération Leucémie Espoir and Ligue Contre le Cancer, Comité Ile-de-France (RS18/75-15) to RI.

Author information

Authors and Affiliations

Authors

Contributions

RI and AP designed the study, performed analyses, and drafted the manuscript. HCW and HdT designed the PML−/− cell line. MCL, EM, BJH, and CL performed and analyzed ChIP-Seq experiments. FC and FF performed metabolomic experiments and primary analyses. GA performed ssGSEA and AVANA dependency analyses under the supervision of KS. BP designed and performed all other experiments with assistance from JP, FL, RdB, JP, AS, YB, RJ, LC, GS, CC, KP, CV, JB, CB, AF, and NF. TB, CG, ER, LA, and HD provided primary AML samples. LV MD and EC provided the molecular annotations for primary AML samples. All authors reviewed the manuscript and approved its final version.

Corresponding author

Correspondence to Raphael Itzykson.

Ethics declarations

Competing interests

The authors have no conflicts of interest to disclose. RI has consulted for Abbvie, Amgen, BMS/Celgene, Daiichi-Sankyo, Jazz Pharma, Karyopharm, Novartis and Stemline Therapeutics, and received research funding from Novartis and Janssen, none of which is related to the present work. KS has consulted for Kronos Bio, Auron Therapeutics, and Astra-Zeneca on unrelated topics, receives grant funding from Novartis which did not fund this project, and holds stock options with Auron Therapeutics on unrelated topics.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardieu, B., Pasanisi, J., Ling, F. et al. Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia. Leukemia 36, 1585–1595 (2022). https://doi.org/10.1038/s41375-022-01573-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01573-6

This article is cited by

Search

Quick links