Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The complex karyotype in hematological malignancies: a comprehensive overview by the Francophone Group of Hematological Cytogenetics (GFCH)

Abstract

Karyotype complexity has major prognostic value in many malignancies. There is no consensus on the definition of a complex karyotype, and the prognostic impact of karyotype complexity differs from one disease to another. Due to the importance of the complex karyotype in the prognosis and treatment of several hematological diseases, the Francophone Group of Hematological Cytogenetics (Groupe Francophone de Cytogénétique Hématologique, GFCH) has developed an up-to-date, practical document for helping cytogeneticists to assess complex karyotypes in these hematological disorders. The evaluation of karyotype complexity is challenging, and it would be useful to have a consensus method for counting the number of chromosomal abnormalities (CAs). Although it is not possible to establish a single prognostic threshold for the number of CAs in all malignancies, a specific consensus prognostic cut-off must be defined for each individual disease. In order to standardize current cytogenetic practices and apply a single denomination, we suggest defining a low complex karyotype as having 3 CAs, an intermediate complex karyotype as having 4 CAs, and a highly complex karyotype as having 5 or more CAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berger R, Bernheim A, Daniel MT, Valensi F, Flandrin G. Induced leukemias. Cytogenetical and cytological aspects. Comparison with primitive leukemias (author’s transl). Nouv Rev Fr Hematol. 1981;23:275–84.

    CAS  PubMed  Google Scholar 

  2. Juliusson G, Robèrt KH, Ost A, Friberg K, Biberfeld P, Nilsson B, et al. Prognostic information from cytogenetic analysis in chronic B-lymphocytic leukemia and leukemic immunocytoma. Blood 1985;65:134–41.

    Article  CAS  PubMed  Google Scholar 

  3. Yunis JJ, Rydell RE, Oken MM, Arnesen MA, Mayer MG, Lobell M. Refined chromosome analysis as an independent prognostic indicator in de novo myelodysplastic syndromes. Blood 1986;67:1721–30.

    Article  CAS  PubMed  Google Scholar 

  4. McGowan-Jordan J, Hastings, Ros J, Moore, Sarah. ISCN 2020 | Karger Book [Internet]. 2020 [cited 2021 Mar 8]. Available from: https://www.karger.com/Book/Home/279152

  5. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 2012;120:2454–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haase D, Stevenson KE, Neuberg D, Maciejewski JP, Nazha A, Sekeres MA, et al. TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia 2019;33:1747–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chun K, Hagemeijer A, Iqbal A, Slovak ML. Implementation of standardized international karyotype scoring practices is needed to provide uniform and systematic evaluation for patients with myelodysplastic syndrome using IPSS criteria: an International Working Group on MDS Cytogenetics Study. Leuk Res. 2010;34:160–5.

    Article  PubMed  Google Scholar 

  8. Schanz J, Tüchler H, Solé F, Mallo M, Luño E, Cervera J, et al. New comprehensive cytogenetic scoring system for primary Myelodysplastic Syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30:820–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schanz J, Solé F, Mallo M, Luño E, Cervera J, Granada I, et al. Clonal architecture in patients with myelodysplastic syndromes and double or minor complex abnormalities: Detailed analysis of clonal composition, involved abnormalities, and prognostic significance. Genes Chromosomes Cancer. 2018;57:547–56.

    Article  CAS  PubMed  Google Scholar 

  10. Kuendgen A, Nomdedeu M, Tuechler H, Garcia-Manero G, Komrokji RS, Sekeres MA, et al. Therapy-related myelodysplastic syndromes deserve specific diagnostic sub-classification and risk-stratification-an approach to classification of patients with t-MDS. Leukemia 2021;35:835–49.

    Article  CAS  PubMed  Google Scholar 

  11. Breems DA, Van Putten WLJ, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KBJ, Mellink CHM, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26:4791–7.

    Article  PubMed  Google Scholar 

  12. Volkert S, Kohlmann A, Schnittger S, Kern W, Haferlach T, Haferlach C. Association of the type of 5q loss with complex karyotype, clonal evolution, TP53 mutation status, and prognosis in acute myeloid leukemia and myelodysplastic syndrome. Genes Chromosomes Cancer. 2014;53:402–10.

    Article  CAS  PubMed  Google Scholar 

  13. Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020;26:1549–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bersanelli M, Travaglino E, Meggendorfer M, Matteuzzi T, Sala C, Mosca E, et al. Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. J Clin Oncol. 2021;39:1223–33.

  15. Stengel A, Shahswar R, Haferlach T, Walter W, Hutter S, Meggendorfer M, et al. Whole transcriptome sequencing detects a large number of novel fusion transcripts in patients with AML and MDS. Blood Adv. 2020;4:5393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mohamed S, Latagliata R, Limongi MZ, Nigro S, Sangiorgi E, Nanni M, et al. Balanced and unbalanced chromosomal translocations in myelodysplastic syndromes: clinical and prognostic significance. Leuk Lymphoma. 2020;61:3476–83.

    Article  PubMed  Google Scholar 

  17. Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 2008;111:1534–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arenillas L, Mallo M, Ramos F, Guinta K, Barragán E, Lumbreras E, et al. Single nucleotide polymorphism array karyotyping: a diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing. Genes Chromosomes Cancer. 2013;52:1167–77.

    Article  CAS  PubMed  Google Scholar 

  19. Volkert S, Haferlach T, Holzwarth J, Zenger M, Kern W, Staller M, et al. Array CGH identifies copy number changes in 11% of 520 MDS patients with normal karyotype and uncovers prognostically relevant deletions. Leukemia 2016;30:257–60.

    Article  CAS  PubMed  Google Scholar 

  20. Evans AG, Ahmad A, Burack WR, Iqbal MA. Combined comparative genomic hybridization and single-nucleotide polymorphism array detects cryptic chromosomal lesions in both myelodysplastic syndromes and cytopenias of undetermined significance. Mod Pathol. 2016;29:1183–99.

    Article  CAS  PubMed  Google Scholar 

  21. Abáigar M, Robledo C, Benito R, Ramos F, Díez-Campelo M, Hermosín L, et al. Chromothripsis is a recurrent genomic abnormality in high-risk myelodysplastic syndromes. PLoS One. 2016;11:e0164370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Garcia-Manero G, Chien KS, Montalban-Bravo G. Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. Am J Hematol. 2020;95:1399–420.

    Article  PubMed  Google Scholar 

  23. Cluzeau T, Sebert M, Rahmé R, Cuzzubbo S, Lehmann-Che J, Madelaine I, et al. Eprenetapopt Plus Azacitidine in TP53-Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia: A Phase II Study by the Groupe Francophone des Myélodysplasies (GFM). J Clin Oncol. 2021;JCO2002342.

  24. Sallman DA, DeZern AE, Garcia-Manero G, Steensma DP, Roboz GJ, Sekeres MA, et al. Eprenetapopt (APR-246) and Azacitidine in TP53-Mutant Myelodysplastic Syndromes. J Clin Oncol. 2021;JCO2002341.

  25. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127:2391–2405. Blood. 2016;128:462–3

    Article  CAS  PubMed  Google Scholar 

  26. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129:424–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010;116:354–65.

    Article  CAS  PubMed  Google Scholar 

  28. Byrd JC, Mrózek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002;100:4325–36.

    Article  CAS  PubMed  Google Scholar 

  29. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 2000;96:4075–83.

    Article  CAS  PubMed  Google Scholar 

  30. Harrison CJ, Hills RK, Moorman AV, Grimwade DJ, Hann I, Webb DKH, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML 10 and 12. J Clin Oncol. 2010;28:2674–81.

    Article  PubMed  Google Scholar 

  31. Daneshbod Y, Kohan L, Taghadosi V, Weinberg OK, Arber DA. Prognostic significance of complex karyotypes in acute myeloid leukemia. Curr Treat Options Oncol. 2019;20:15.

    Article  PubMed  Google Scholar 

  32. Schoch C, Kern W, Schnittger S, Hiddemann W, Haferlach T. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia 2004;18:120–5.

    Article  CAS  PubMed  Google Scholar 

  33. Bacher U, Haferlach T, Alpermann T, Zenger M, Kröger N, Beelen DW, et al. Comparison of cytogenetic clonal evolution patterns following allogeneic hematopoietic transplantation versus conventional treatment in patients at relapse of AML. Biol Blood Marrow Transplant. 2010;16:1649–57.

    Article  PubMed  Google Scholar 

  34. Mrózek K, Marcucci G, Nicolet D, Maharry KS, Becker H, Whitman SP, et al. Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J Clin Oncol. 2012;30:4515–23.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Orozco JJ, Appelbaum FR. Unfavorable, complex, and monosomal karyotypes: the most challenging forms of acute myeloid leukemia. Oncology. 2012;26:706–12.

    PubMed  Google Scholar 

  36. Schoch C, Kern W, Kohlmann A, Hiddemann W, Schnittger S, Haferlach T. Acute myeloid leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic imbalances and a specific gene expression profile. Genes Chromosomes Cancer. 2005;43:227–38.

    Article  CAS  PubMed  Google Scholar 

  37. Mrózek K, Eisfeld A-K, Kohlschmidt J, Carroll AJ, Walker CJ, Nicolet D, et al. Complex karyotype in de novo acute myeloid leukemia: typical and atypical subtypes differ molecularly and clinically. Leukemia 2019;33:1620–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Poiré X, Moser BK, Gallagher RE, Laumann K, Bloomfield CD, Powell BL, et al. Arsenic trioxide in front-line therapy of acute promyelocytic leukemia (C9710): prognostic significance of FLT3 mutations and complex karyotype. Leuk Lymphoma. 2014;55:1523–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Appelbaum FR, Kopecky KJ, Tallman MS, Slovak ML, Gundacker HM, Kim HT, et al. The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. Br J Haematol. 2006;135:165–73.

    Article  PubMed  Google Scholar 

  40. Weinberg OK, Ohgami RS, Ma L, Seo K, Ren L, Gotlib JR, et al. Acute myeloid leukemia with monosomal karyotype: morphologic, immunophenotypic, and molecular findings. Am J Clin Pathol. 2014;142:190–5.

    Article  PubMed  Google Scholar 

  41. Haferlach C, Alpermann T, Schnittger S, Kern W, Chromik J, Schmid C, et al. Prognostic value of monosomal karyotype in comparison to complex aberrant karyotype in acute myeloid leukemia: a study on 824 cases with aberrant karyotype. Blood 2012;119:2122–5.

    Article  CAS  PubMed  Google Scholar 

  42. Stölzel F, Mohr B, Kramer M, Oelschlägel U, Bochtler T, Berdel WE, et al. Karyotype complexity and prognosis in acute myeloid leukemia. Blood Cancer J. 2016;6:e386.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Luquet I, Laï JL, Barin C, Baranger L, Bilhou-Nabera C, Lippert E, et al. Hyperdiploid karyotypes in acute myeloid leukemia define a novel entity: a study of 38 patients from the Groupe Francophone de Cytogenetique Hematologique (GFCH). Leukemia 2008;22:132–7.

    Article  CAS  PubMed  Google Scholar 

  44. Chilton L, Hills RK, Harrison CJ, Burnett AK, Grimwade D, Moorman AV. Hyperdiploidy with 49-65 chromosomes represents a heterogeneous cytogenetic subgroup of acute myeloid leukemia with differential outcome. Leukemia 2014;28:321–8.

    Article  CAS  PubMed  Google Scholar 

  45. von Neuhoff C, Reinhardt D, Sander A, Zimmermann M, Bradtke J, Betts DR, et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol. 2010;28:2682–9.

    Article  CAS  Google Scholar 

  46. Rasche M, von Neuhoff C, Dworzak M, Bourquin J-P, Bradtke J, Göhring G, et al. Genotype-outcome correlations in pediatric AML: the impact of a monosomal karyotype in trial AML-BFM 2004. Leukemia 2017;31:2807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bager N, Juul-Dam KL, Sandahl JD, Abrahamsson J, Beverloo B, de Bont ESJM, et al. Complex and monosomal karyotype are distinct cytogenetic entities with an adverse prognostic impact in paediatric acute myeloid leukaemia. A NOPHO-DBH-AML study. Br J Haematol. 2018;183:618–28.

    Article  PubMed  Google Scholar 

  48. Renneville A, Abdelali RB, Chevret S, Nibourel O, Cheok M, Pautas C, et al. Clinical impact of gene mutations and lesions detected by SNP-array karyotyping in acute myeloid leukemia patients in the context of gemtuzumab ozogamicin treatment: Results of the ALFA-0701 trial. Oncotarget 2014;5:916–32.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fontana MC, Marconi G, Feenstra JDM, Fonzi E, Papayannidis C, Ghelli Luserna di Rorá A, et al. Chromothripsis in acute myeloid leukemia: biological features and impact on survival. Leukemia 2018;32:1609–20.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mareschal S, Palau A, Lindberg J, Ruminy P, Nilsson C, Bengtzén S, et al. Challenging conventional karyotyping by next-generation karyotyping in 281 intensively treated patients with AML. Blood Adv. 2021;5:1003–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gerstung M, Papaemmanuil E, Martincorena I, Bullinger L, Gaidzik VI, Paschka P, et al. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet. 2017;49:332–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chiche E, Rahmé R, Bertoli S, Dumas P-Y, Micol J-B, Hicheri Y, et al. Real-life experience with CPX-351 and impact on the outcome of high-risk AML patients: a multicentric French cohort. Blood Adv. 2021;5:176–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl J Med. 2020;383:617–29.

    Article  CAS  PubMed  Google Scholar 

  54. for the SAKK and the German CML Study Group, Hehlmann R, Voskanyan A, Lauseker M, Pfirrmann M, Kalmanti L, et al. High-risk additional chromosomal abnormalities at low blast counts herald death by CML. Leukemia 2020;34:2074–86.

    Article  CAS  Google Scholar 

  55. Pérez-Jacobo F, Tuna-Aguilar E, Demichelis-Gómez R, Crespo-Solís E, Valencia-Rocha U, Aguayo Á, et al. Prognostic factors, response to treatment, and survival in patients with chronic myeloid leukemia in blast phase: a single-institution survey. Clin Lymphoma Myeloma Leuk. 2015;15:778–84.

    Article  PubMed  Google Scholar 

  56. Fabarius A, Leitner A, Hochhaus A, Müller MC, Hanfstein B, Haferlach C, et al. Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML Study IV. Blood 2011;118:6760–8.

    Article  CAS  PubMed  Google Scholar 

  57. Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020;34:966–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Millot F, Dupraz C, Guilhot J, Suttorp M, Brizard F, Leblanc T, et al. Additional cytogenetic abnormalities and variant t(9;22) at the diagnosis of childhood chronic myeloid leukemia: The experience of the International Registry for Chronic Myeloid Leukemia in Children and Adolescents: Cytogenetics of Childhood CML. Cancer 2017;123:3609–16.

    Article  CAS  PubMed  Google Scholar 

  59. Bidet A, Dulucq S, Smol T, Marceau-Renaut A, Morisset S, Coiteux V, et al. Poor prognosis of chromosome 7 clonal aberrations in Philadelphia-negative metaphases and relevance of potential underlying myelodysplastic features in chronic myeloid leukemia. Haematologica 2019;104:1150–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huh J, Jung CW, Kim JW, Kim H-J, Kim S-H, Shin MG, et al. Genome-wide high density single-nucleotide polymorphism array-based karyotyping improves detection of clonal aberrations including der(9) deletion, but does not predict treatment outcomes after imatinib therapy in chronic myeloid leukemia. Ann Hematol. 2011;90:1255–64.

    Article  CAS  PubMed  Google Scholar 

  61. Bacher U, Haferlach T, Kern W, Hiddemann W, Schnittger S, Schoch C. Conventional cytogenetics of myeloproliferative diseases other than CML contribute valid information. Ann Hematol. 2005;84:250–7.

    Article  PubMed  Google Scholar 

  62. Bacher U, Schnittger S, Kern W, Weiss T, Haferlach T, Haferlach C. Distribution of cytogenetic abnormalities in myelodysplastic syndromes, Philadelphia negative myeloproliferative neoplasms, and the overlap MDS/MPN category. Ann Hematol. 2009;88:1207–13.

    Article  PubMed  Google Scholar 

  63. Tefferi A, Rumi E, Finazzi G, Gisslinger H, Vannucchi AM, Rodeghiero F, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia 2013;27:1874–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29:392–7.

    Article  PubMed  Google Scholar 

  65. Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M, et al. MIPSS70: Mutation-Enhanced International Prognostic Score System for Transplantation-Age Patients With Primary Myelofibrosis. JCO. 2018;36:310–8.

    Article  CAS  Google Scholar 

  66. Hussein K, Pardanani AD, Van Dyke DL, Hanson CA, Tefferi A. International Prognostic Scoring System–independent cytogenetic risk categorization in primary myelofibrosis. Blood 2010;115:496–9.

    Article  CAS  PubMed  Google Scholar 

  67. Tefferi A, Guglielmelli P, Nicolosi M, Mannelli F, Mudireddy M, Bartalucci N, et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia 2018;32:1631–42.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Barbui T, Tefferi A, Vannucchi AM, Passamonti F, Silver RT, Hoffman R, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia 2018;32:1057–69.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tefferi A, Guglielmelli P, Lasho TL, Coltro G, Finke CM, Loscocco GG, et al. Mutation-enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera. Br J Haematol. 2020;189:291–302.

    Article  CAS  PubMed  Google Scholar 

  70. Luque Paz D, Jouanneau-Courville R, Riou J, Ianotto J-C, Boyer F, Chauveau A, et al. Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation. Blood Adv. 2020;4:4887–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Savani M, Dulery R, Bazarbachi AH, Mohty R, Brissot E, Malard F, et al. Allogeneic haematopoietic cell transplantation for myelofibrosis: a real-life perspective. Br J Haematol. [cited 2021 Jun 2];n/a(n/a). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/bjh.17469

  72. Tang G, Zhang L, Fu B, Hu J, Lu X, Hu S, et al. Cytogenetic risk stratification of 417 patients with chronic myelomonocytic leukemia from a single institution. Am J Hematol. 2014;89:813–8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Such E, Cervera J, Costa D, Solé F, Vallespí T, Luño E, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica 2011;96:375–83.

    Article  PubMed  Google Scholar 

  74. Wassie EA, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. Molecular and prognostic correlates of cytogenetic abnormalities in chronic myelomonocytic leukemia: a Mayo Clinic-French Consortium Study. Am J Hematol. 2014;89:1111–5.

    Article  CAS  PubMed  Google Scholar 

  75. Such E, Germing U, Malcovati L, Cervera J, Kuendgen A, Della Porta MG, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood 2013;121:3005–15.

    Article  CAS  PubMed  Google Scholar 

  76. Kanagal-Shamanna R, Hodge JC, Tucker T, Shetty S, Yenamandra A, Dixon-McIver A, et al. Assessing copy number aberrations and copy neutral loss of heterozygosity across the genome as best practice: An evidence based review of clinical utility from the cancer genomics consortium (CGC) working group for myelodysplastic syndrome, myelodysplastic/myeloproliferative and myeloproliferative neoplasms. Cancer Genet 2018;228–229:197–217.

    Article  PubMed  Google Scholar 

  77. Elena C, Gallì A, Such E, Meggendorfer M, Germing U, Rizzo E, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood 2016;128:1408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kwon J. Diagnosis and treatment of chronic myelomonocytic leukemia. Blood Res. 2021;56:5–16.

    Article  CAS  PubMed Central  Google Scholar 

  79. Eissa H, Gooley TA, Sorror ML, Nguyen F, Scott BL, Doney K, et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia: relapse-free survival is determined by karyotype and comorbidities. Biol Blood Marrow Transpl. 2011;17:908–15.

    Article  Google Scholar 

  80. Moorman AV, Harrison CJ, Buck GAN, Richards SM, Secker-Walker LM, Martineau M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood 2007;109:3189–97.

    Article  CAS  PubMed  Google Scholar 

  81. Wetzler M, Dodge RK, Mrózek K, Stewart CC, Carroll AJ, Tantravahi R, et al. Additional cytogenetic abnormalities in adults with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a study of the Cancer and Leukaemia Group B. Br J Haematol. 2004;124:275–88.

    Article  PubMed  Google Scholar 

  82. Motlló C, Ribera J-M, Morgades M, Granada I, Montesinos P, Mercadal S, et al. Frequency and prognostic significance of additional cytogenetic abnormalities to the Philadelphia chromosome in young and older adults with acute lymphoblastic leukemia. Leuk Lymphoma. 2018;59:146–54.

    Article  PubMed  Google Scholar 

  83. Marks DI, Paietta EM, Moorman AV, Richards SM, Buck G, DeWald G, et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood 2009;114:5136–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lafage-Pochitaloff M, Baranger L, Hunault M, Cuccuini W, Bidet A, Dastugue N, et al. Value of cytogenetic abnormalities in adult patients with Philadelphia Chromosome (Ph)-Negative Acute Lymphoblastic Leukemia (ALL) treated in the pediatric-inspired trials from the Group for Research on Adult ALL (GRAALL). Blood 2014;124:492–492.

    Article  Google Scholar 

  85. Lafage-Pochitaloff M, Baranger L, Hunault M, Cuccuini W, Lefebvre C, Bidet A, et al. Impact of cytogenetic abnormalities in adults with Ph-negative B-cell precursor acute lymphoblastic leukemia. Blood 2017;130:1832–44.

    Article  CAS  PubMed  Google Scholar 

  86. Jain P, Gu J, Kanagal-Shamanna R, Tang Z, Patel KP, Yao H, et al. Clinical implications of cytogenetic heterogeneity in Philadelphia chromosome positive (Ph+) adult B cell acute lymphoblastic leukemia following tyrosine kinase inhibitors and chemotherapy regimens. Leuk Res. 2019;84:106176.

    Article  PubMed  Google Scholar 

  87. Chalandon Y, Thomas X, Hayette S, Cayuela J-M, Abbal C, Huguet F, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood 2015;125:3711–9.

    Article  CAS  PubMed  Google Scholar 

  88. Aldoss I, Stiller T, Cao TM, Palmer JM, Thomas SH, Forman SJ, et al. Impact of additional cytogenetic abnormalities in adults with philadelphia chromosome-positive acute lymphoblastic leukemia undergoing allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transpl. 2015;21:1326–9.

    Article  CAS  Google Scholar 

  89. Heerema NA, Harbott J, Galimberti S, Camitta BM, Gaynon PS, Janka-Schaub G, et al. Secondary cytogenetic aberrations in childhood Philadelphia chromosome positive acute lymphoblastic leukemia are nonrandom and may be associated with outcome. Leukemia 2004;18:693–702.

    Article  CAS  PubMed  Google Scholar 

  90. Van Vlierberghe P, Ambesi-Impiombato A, De Keersmaecker K, Hadler M, Paietta E, Tallman MS, et al. Prognostic relevance of integrated genetic profiling in adult T-cell acute lymphoblastic leukemia. Blood 2013;122:74–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Li Y, Schwab C, Ryan S, Papaemmanuil E, Robinson HM, Jacobs P, et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 2014;508:98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Harrison CJ, Moorman AV, Schwab C, Carroll AJ, Raetz EA, Devidas M, et al. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia 2014;28:1015–21.

    Article  CAS  PubMed  Google Scholar 

  93. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Marks DI, Rowntree C. Management of adults with T-cell lymphoblastic leukemia. Blood 2017;129:1134–42.

    Article  CAS  PubMed  Google Scholar 

  95. Mayr C, Speicher MR, Kofler DM, Buhmann R, Strehl J, Busch R, et al. Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood 2006;107:742–51.

    Article  CAS  PubMed  Google Scholar 

  96. Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia 2007;21:2442–51.

    Article  CAS  PubMed  Google Scholar 

  97. Sutton L, Chevret S, Tournilhac O, Diviné M, Leblond V, Corront B, et al. Autologous stem cell transplantation as a first-line treatment strategy for chronic lymphocytic leukemia: a multicenter, randomized, controlled trial from the SFGM-TC and GFLLC. Blood 2011;117:6109–19.

    Article  CAS  PubMed  Google Scholar 

  98. Jondreville L, Krzisch D, Chapiro E, Nguyen-Khac F. The complex karyotype and chronic lymphocytic leukemia: prognostic value and diagnostic recommendations. Am J Hematol. 2020;95:1361–7.

    Article  PubMed  Google Scholar 

  99. Juliusson G, Oscier DG, Fitchett M, Ross FM, Stockdill G, Mackie MJ, et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N. Engl J Med. 1990;323:720–4.

    Article  CAS  PubMed  Google Scholar 

  100. Baliakas P, Iskas M, Gardiner A, Davis Z, Plevova K, Nguyen-Khac F, et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol. 2014;89:249–55.

    Article  CAS  PubMed  Google Scholar 

  101. Baliakas P, Jeromin S, Iskas M, Puiggros A, Plevova K, Nguyen-Khac F, et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood 2019;133:1205–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Visentin A, Bonaldi L, Rigolin GM, Mauro FR, Martines A, Frezzato F, et al. The complex karyotype landscape in chronic lymphocytic leukemia allows to refine the risk of Richter syndrome transformation. Haematologica. 2020 [cited 2021 Jun 30]; Available from: https://haematologica.org/article/view/haematol.2021.278304

  103. Senouci A, Smol T, Tricot S, Bakala J, Moulessehoul S, Quilichini B, et al. Cytogenetic landscape in 1012 newly diagnosed chronic lymphocytic leukemia. Eur J Haematol. 2019;103:607–13.

    Article  CAS  PubMed  Google Scholar 

  104. Puiggros A, Collado R, Calasanz MJ, Ortega M, Ruiz-Xivillé N, Rivas-Delgado A, et al. Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of TP53/ATM FISH deletions. Oncotarget 2017;8:54297–303.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rigolin GM, Cavallari M, Quaglia FM, Formigaro L, Lista E, Urso A, et al. In CLL, comorbidities and the complex karyotype are associated with an inferior outcome independently of CLL-IPI. Blood 2017;129:3495–8.

    Article  CAS  PubMed  Google Scholar 

  106. Rigolin GM, Saccenti E, Guardalben E, Cavallari M, Formigaro L, Zagatti B, et al. In chronic lymphocytic leukaemia with complex karyotype, major structural abnormalities identify a subset of patients with inferior outcome and distinct biological characteristics. Br J Haematol. 2018;181:229–33.

    Article  CAS  PubMed  Google Scholar 

  107. Roos-Weil D, Nguyen-Khac F, Chevret S, Touzeau C, Roux C, Lejeune J, et al. Mutational and cytogenetic analyses of 188 CLL patients with trisomy 12: A retrospective study from the French Innovative Leukemia Organization (FILO) working group. Genes Chromosomes Cancer. 2018;57:533–40.

    Article  CAS  PubMed  Google Scholar 

  108. Baliakas P, Puiggros A, Xochelli A, Sutton L-A, Nguyen-Khac F, Gardiner A, et al. Additional trisomies amongst patients with chronic lymphocytic leukemia carrying trisomy 12: the accompanying chromosome makes a difference. Haematologica 2016;101:e299–302.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Gunnarsson R, Mansouri L, Isaksson A, Göransson H, Cahill N, Jansson M, et al. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia. Haematologica 2011;96:1161–9.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Knight SJL, Yau C, Clifford R, Timbs AT, Sadighi Akha E, Dréau HM, et al. Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia. Leukemia 2012;26:1564–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yu L, Kim HT, Kasar S, Benien P, Du W, Hoang K, et al. Survival of Del17p CLL depends on genomic complexity and somatic mutation. Clin Cancer Res. 2017;23:735–45.

    Article  CAS  PubMed  Google Scholar 

  112. Leeksma AC, Baliakas P, Moysiadis T, Puiggros A, Plevova K, Van der Kevie-Kersemaekers A-M, et al. Genomic arrays identify high-risk chronic lymphocytic leukemia with genomic complexity: a multi-center study. Haematologica 2021;106:87–97.

    Article  CAS  PubMed  Google Scholar 

  113. Ramos-Campoy S, Puiggros A, Beà S, Bougeon S, Larráyoz MJ, Costa D, et al. Chromosome banding analysis and genomic microarrays are both useful but not equivalent methods for genomic complexity risk stratification in chronic lymphocytic leukemia patients. Haematologica. 2021.

  114. Kater AP, Wu JQ, Kipps T, Eichhorst B, Hillmen P, D’Rozario J, et al. Venetoclax Plus Rituximab in relapsed chronic lymphocytic leukemia: 4-Year results and evaluation of impact of genomic complexity and gene mutations from the MURANO Phase III Study. J Clin Oncol. 2020;38:4042–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Crassini K, Stevenson WS, Mulligan SP, Best OG. Molecular pathogenesis of chronic lymphocytic leukaemia. Br J Haematol. 2019;186:668–84.

    Article  PubMed  Google Scholar 

  116. Guièze R, Robbe P, Clifford R, de Guibert S, Pereira B, Timbs A, et al. Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL. Blood 2015;126:2110–7.

    Article  PubMed  CAS  Google Scholar 

  117. Puente XS, Beà S, Valdés-Mas R, Villamor N, Gutiérrez-Abril J, Martín-Subero JI, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015;526):519–24.

    Article  CAS  PubMed  Google Scholar 

  118. Nadeu F, Clot G, Delgado J, Martín-García D, Baumann T, Salaverria I, et al. Clinical impact of the subclonal architecture and mutational complexity in chronic lymphocytic leukemia. Leukemia 2018;32:645–53.

    Article  CAS  PubMed  Google Scholar 

  119. Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl J Med. 2000;343:1910–6.

    Article  PubMed  Google Scholar 

  120. Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013;121:1403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kittai AS, Miller C, Goldstein D, Huang Y, Abruzzo LV, Beckwith K, et al. The impact of increasing karyotypic complexity and evolution on survival in patients with CLL treated with ibrutinib. Blood 2021;138:2372–82.

    Article  CAS  PubMed  Google Scholar 

  122. Anderson MA, Tam C, Lew TE, Juneja S, Juneja M, Westerman D, et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood 2017;129:3362–70.

    Article  CAS  PubMed  Google Scholar 

  123. Bouclet F, Calleja A, Dilhuydy M-S, Véronèse L, Pereira B, Amorim S, et al. Real-world outcomes following venetoclax therapy in patients with chronic lymphocytic leukemia or Richter syndrome: a FILO study of the French compassionate use cohort. Ann Hematol. 2021;100:987–93.

    Article  CAS  PubMed  Google Scholar 

  124. Sarkozy C, Terré C, Jardin F, Radford I, Roche-Lestienne C, Penther D, et al. Complex karyotype in mantle cell lymphoma is a strong prognostic factor for the time to treatment and overall survival, independent of the MCL international prognostic index. Genes Chromosomes Cancer. 2014;53:106–16.

    Article  CAS  PubMed  Google Scholar 

  125. Greenwell IB, Staton AD, Lee MJ, Switchenko JM, Saxe DF, Maly JJ, et al. Complex karyotype in patients with mantle cell lymphoma predicts inferior survival and poor response to intensive induction therapy. Cancer 2018;124:2306–15.

    Article  PubMed  Google Scholar 

  126. Obr A, Procházka V, Jirkuvová A, Urbánková H, Kriegova E, Schneiderová P, et al. TP53 Mutation and Complex Karyotype Portends a Dismal Prognosis in Patients With Mantle Cell Lymphoma. Clin Lymphoma Myeloma Leuk. 2018;18:762–8.

    Article  PubMed  Google Scholar 

  127. Beà S, Ribas M, Hernández JM, Bosch F, Pinyol M, Hernández L, et al. Increased number of chromosomal imbalances and high-level DNA amplifications in mantle cell lymphoma are associated with blastoid variants. Blood 1999;93:4365–74.

    PubMed  Google Scholar 

  128. Katzenberger T, Kienle D, Stilgenbauer S, Höller S, Schilling C, Mäder U, et al. Delineation of distinct tumour profiles in mantle cell lymphoma by detailed cytogenetic, interphase genetic and morphological analysis. Br J Haematol. 2008;142:538–50.

    Article  PubMed  Google Scholar 

  129. Ott G, Kalla J, Ott MM, Schryen B, Katzenberger T, Müller JG, et al. Blastoid variants of mantle cell lymphoma: frequent bcl-1 rearrangements at the major translocation cluster region and tetraploid chromosome clones. Blood 1997;89:1421–9.

    Article  CAS  PubMed  Google Scholar 

  130. Neben K, Ott G, Schweizer S, Kalla J, Tews B, Katzenberger T, et al. Expression of centrosome-associated gene products is linked to tetraploidization in mantle cell lymphoma. Int J Cancer. 2007;120:1669–77.

    Article  CAS  PubMed  Google Scholar 

  131. Clot G, Jares P, Giné E, Navarro A, Royo C, Pinyol M, et al. A gene signature that distinguishes conventional and leukemic nonnodal mantle cell lymphoma helps predict outcome. Blood. 2018;132:413–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nadeu F, Martin-Garcia D, Clot G, Díaz-Navarro A, Duran-Ferrer M, Navarro A, et al. Genomic and epigenomic insights into the origin, pathogenesis, and clinical behavior of mantle cell lymphoma subtypes. Blood 2020;136):1419–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Streich L, Sukhanova M, Lu X, Chen Y-H, Venkataraman G, Mathews S, et al. Aggressive morphologic variants of mantle cell lymphoma characterized with high genomic instability showing frequent chromothripsis, CDKN2A/B loss, and TP53 mutations: a multi-institutional study. Genes Chromosomes Cancer. 2020;59:484–94.

    Article  CAS  PubMed  Google Scholar 

  134. Johnson NA, Al-Tourah A, Brown CJ, Connors JM, Gascoyne RD, Horsman DE. Prognostic significance of secondary cytogenetic alterations in follicular lymphomas. Genes Chromosomes Cancer. 2008;47:1038–48.

    Article  CAS  PubMed  Google Scholar 

  135. Mitsui T, Yokohama A, Koiso H, Saito A, Toyama K, Shimizu H, et al. Prognostic impact of trisomy 21 in follicular lymphoma. Br J Haematol. 2019;184:570–7.

    Article  CAS  PubMed  Google Scholar 

  136. Salido M, Baró C, Oscier D, Stamatopoulos K, Dierlamm J, Matutes E, et al. Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group. Blood 2010;116):1479–88.

    Article  CAS  PubMed  Google Scholar 

  137. Yi S, Yan Y, Xiong W, Lv R, Yu Z, Liu W, et al. Distinct clinical characteristics draw a new prognostic model for splenic marginal zone lymphoma in HBV high prevalent region. Oncotarget 2017;8:98757–70.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Nguyen-Khac F, Lambert J, Chapiro E, Grelier A, Mould S, Barin C, et al. Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenström’s macroglobulinemia. Haematologica 2013;98:649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Krzisch D, Guedes N, Boccon-Gibod C, Baron M, Bravetti C, Davi F, et al. Cytogenetic and molecular abnormalities in Waldenström’s macroglobulinemia patients: correlations and prognostic impact. Am J Hematol. 2021;96:1569–79.

  140. Chapiro E, Pramil E, Diop M, Roos-Weil D, Dillard C, Gabillaud C, et al. Genetic characterization of B-cell prolymphocytic leukemia: a prognostic model involving MYC and TP53. Blood. 2019;134:1821–31.

    Article  CAS  PubMed  Google Scholar 

  141. Daudignon A, Quilichini B, Ameye G, Poirel H, Bastard C, Terré C. Cytogenetics in the management of multiple myeloma: an update by the Groupe francophone de cytogénétique hématologique (GFCH). Ann Biol Clin. 2016;74:588–95.

    Google Scholar 

  142. Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J Clin Oncol. 2015;33:2863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kumar SK, Callander NS, Hillengass J, Liedtke M, Baljevic M, Campagnaro E, et al. NCCN Guidelines Insights: Multiple Myeloma, Version 1.2020. J Natl Compr Cancer Netw. 2019;17:1154–65.

    Article  Google Scholar 

  144. Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95:548–67.

    Article  CAS  PubMed  Google Scholar 

  145. Smadja NV, Leroux D, Soulier J, Dumont S, Arnould C, Taviaux S, et al. Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes Chromosomes Cancer. 2003;38:234–9.

    Article  PubMed  Google Scholar 

  146. Smadja N-V, Fruchart C, Isnard F, Louvet C, Dutel J-L, Cheron N, et al. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia. 1998;12:960–9.

  147. Avet-Loiseau H, Minvielle S, Moreau P. Ultra high-risk myeloma: definition, identification, management. Hématologie. 2011;17(Mar):145–9.

    Google Scholar 

  148. Hanamura I Gain/Amplification of Chromosome Arm 1q21 in Multiple Myeloma. Cancers (Basel). 2021;13:256.

  149. Avet-Loiseau H, Attal M, Campion L, Caillot D, Hulin C, Marit G, et al. Long-term analysis of the IFM 99 trials for myeloma: cytogenetic abnormalities [t(4;14), del(17p), 1q gains] play a major role in defining long-term survival. J Clin Oncol. 2012;30:1949–52.

    Article  PubMed  Google Scholar 

  150. Smol T, Dufour A, Tricot S, Wemeau M, Stalnikiewicz L, Bernardi F, et al. Combination of t(4;14), del(17p13), del(1p32) and 1q21 gain FISH probes identifies clonal heterogeneity and enhances the detection of adverse cytogenetic profiles in 233 newly diagnosed multiple myeloma. Mol Cytogenet. 2017;10:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Perrot A, Lauwers-Cances V, Tournay E, Hulin C, Chretien M-L, Royer B, et al. Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma. J Clin Oncol. 2019;37:1657–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rack KA, van den Berg E, Haferlach C, Beverloo HB, Costa D, Espinet B, et al. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms. Leukemia 2019;33:1851–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Caers J, Garderet L, Kortüm KM, O’Dwyer ME, van de Donk NWCJ, Binder M, et al. European Myeloma Network recommendations on tools for the diagnosis and monitoring of multiple myeloma: what to use and when. Haematologica 2018;103:1772–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Baysal M, Demirci U, Umit E, Kirkizlar HO, Atli EI, Gurkan H, et al. Concepts of double hit and triple hit disease in multiple myeloma, entity and prognostic significance. Sci Rep. 2020;10:5991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies F, et al. A high-risk, double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia 2019;33:159–70.

    Article  CAS  PubMed  Google Scholar 

  156. Pugh TJ, Fink JM, Lu X, Mathew S, Murata-Collins J, Willem P, et al. Assessing genome-wide copy number aberrations and copy-neutral loss-of-heterozygosity as best practice: An evidence-based review from the Cancer Genomics Consortium working group for plasma cell disorders. Cancer Genet. 2018;228–229:184–96.

    Article  PubMed  CAS  Google Scholar 

  157. Neuse CJ, Lomas OC, Schliemann C, Shen YJ, Manier S, Bustoros M, et al. Genome instability in multiple myeloma. Leukemia 2020;34:2887–97.

    Article  PubMed  Google Scholar 

  158. Bolli N, Biancon G, Moarii M, Gimondi S, Li Y, de Philippis C, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia 2018;32:2604–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Condoluci A, Rossi D. Genomic instability and clonal evolution in chronic lymphocytic leukemia: clinical relevance. J Natl Compr Canc Netw. 2020;1–7.

  160. Duncavage EJ, Schroeder MC, O’Laughlin M, Wilson R, MacMillan S, Bohannon A, et al. Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers. N. Engl J Med. 2021;384:924–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lestringant V, Duployez N, Penther D, Luquet I, Derrieux C, Lutun A, et al. Optical genome mapping, a promising alternative to gold standard cytogenetic approaches in a series of acute lymphoblastic leukemias. Genes Chromosomes Cancer. 2021;60657–67.

    Article  CAS  PubMed  Google Scholar 

  162. Neveling K, Mantere T, Vermeulen S, Oorsprong M, Beek R van, Kater-Baats E, et al. Next-generation cytogenetics: Comprehensive assessment of 52 hematological malignancy genomes by optical genome mapping. Am J Hum Genet. 2021 [cited 2021 Jul 16];0(0). Available from: https://www.cell.com/ajhg/abstract/S0002-9297(21)00223-8

  163. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997;89:2079–88.

    Article  CAS  PubMed  Google Scholar 

  164. Mauritzson N, Albin M, Rylander L, Billström R, Ahlgren T, Mikoczy Z, et al. Pooled analysis of clinical and cytogenetic features in treatment-related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed 1976-1993 and on 5098 unselected cases reported in the literature 1974-2001. Leukemia. 2002;16:2366–78.

    Article  CAS  PubMed  Google Scholar 

  165. Kantarjian H, O’Brien S, Ravandi F, Cortes J, Shan J, Bennett JM, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer 2008;113:1351–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FN-K was responsible for designing and managing the review article. FN-K, AB, AD, ML-P, CL, M-BT, and LV managed the sections’ writing. FN-K, AB, AD, ML-P, CL, M-BT, LV, GA, CB-N, EC, M-AC-R, WC, ND-G, VE, IL, LM, NN, DP, BQ, and CT contributed to writing the report and reviewed the full article.

Corresponding author

Correspondence to F. Nguyen-Khac.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen-Khac, F., Bidet, A., Daudignon, A. et al. The complex karyotype in hematological malignancies: a comprehensive overview by the Francophone Group of Hematological Cytogenetics (GFCH). Leukemia 36, 1451–1466 (2022). https://doi.org/10.1038/s41375-022-01561-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01561-w

This article is cited by

Search

Quick links