Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE LYMPHOBLASTIC LEUKEMIA

JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia

Abstract

Resistance to mitochondrial apoptosis predicts inferior treatment outcomes in patients with diverse tumor types, including T-cell acute lymphoblastic leukemia (T-ALL). However, the genetic basis for variability in this mitochondrial apoptotic phenotype is poorly understood, preventing its rational therapeutic targeting. Using BH3 profiling and exon sequencing analysis of childhood T-ALL clinical specimens, we found that mitochondrial apoptosis resistance was most strongly associated with activating mutations of JAK3. Mutant JAK3 directly repressed apoptosis in leukemia cells, because its inhibition with mechanistically distinct pharmacologic inhibitors resulted in reversal of mitochondrial apoptotic blockade. Inhibition of JAK3 led to loss of MEK, ERK and BCL2 phosphorylation, and BH3 profiling revealed that JAK3-mutant primary T-ALL patient samples were characterized by a dependence on BCL2. Treatment of JAK3-mutant T-ALL cells with the JAK3 inhibitor tofacitinib in combination with a spectrum of conventional chemotherapeutics revealed synergy with glucocorticoids, in vitro and in vivo. These findings thus provide key insights into the molecular genetics of mitochondrial apoptosis resistance in childhood T-ALL, and a compelling rationale for a clinical trial of JAK3 inhibitors in combination with glucocorticoids for patients with JAK3-mutant T-ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: JAK3 mutations are associated with resistance to mitochondrial apoptosis in human T-ALL.
Fig. 2: JAK3-activating mutations repress mitochondrial apoptosis in T-ALL.
Fig. 3: JAK3 positively regulates phosphorylation of MEK, ERK and BCL2, and JAK3-mutant primary T-ALLs are characterized by BCL2 dependence.
Fig. 4: Tofacitinib treatment synergizes with corticosteroids.
Fig. 5: In vivo activity of the combination of tofacitinib and dexamethasone in human JAK3-mutant T-ALL.

Similar content being viewed by others

References

  1. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373:1541–52.

    Article  CAS  PubMed  Google Scholar 

  2. Tsukimoto I, Wong KY, Lampkin BC. Surface markers and prognostic factors in acute lymphoblastic leukemia. N Engl J Med. 1976;294:245–8.

    Article  CAS  PubMed  Google Scholar 

  3. Chessells JM, Hardisty RM, Rapson NT, Greaves MF. Acute lymphoblastic leukaemia in children: classification and prognosis. Lancet. 1977;2:1307–9.

    Article  CAS  PubMed  Google Scholar 

  4. Sallan SE, Ritz J, Pesando J, Gelber R, O’Brien C, Hitchcock S, et al. Cell surface antigens: prognostic implications in childhood acute lymphoblastic leukemia. Blood. 1980;55:395–402.

    Article  CAS  PubMed  Google Scholar 

  5. Hofmans M, Suciu S, Ferster A, Van Vlierberghe P, Mazingue F, Sirvent N, et al. Results of successive EORTC-CLG 58 881 and 58 951 trials in paediatric T-cell acute lymphoblastic leukaemia (ALL). Br J Haematol. 2019;186:741–53.

    Article  CAS  PubMed  Google Scholar 

  6. Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol. 2012;30:1663–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goldberg JM, Silverman LB, Levy DE, Dalton VK, Gelber RD, Lehmann L, et al. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol. 2003;21:3616–22.

    Article  PubMed  Google Scholar 

  8. Burns MA, Place AE, Stevenson KE, Gutierrez A, Forrest S, Pikman Y, et al. Identification of prognostic factors in childhood T-cell acute lymphoblastic leukemia: results from DFCI ALL Consortium Protocols 05-001 and 11-001. Pediatr Blood Cancer. 2021;68:e28719.

    CAS  PubMed  Google Scholar 

  9. Pieters R, de Groot-Kruseman H, Van der Velden V, Fiocco M, van den Berg H, de Bont E, et al. Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: study ALL10 from the Dutch Childhood Oncology Group. J Clin Oncol. 2016;34:2591–601.

    Article  PubMed  Google Scholar 

  10. Vora A, Goulden N, Mitchell C, Hancock J, Hough R, Rowntree C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2014;15:809–18.

    Article  PubMed  Google Scholar 

  11. Pui CH, Pei D, Coustan-Smith E, Jeha S, Cheng C, Bowman WP, et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol. 2015;16:465–74.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pui CH, Pei D, Raimondi SC, Coustan-Smith E, Jeha S, Cheng C, et al. Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with Response-Adapted therapy. Leukemia 2017;31:333–9.

    Article  PubMed  Google Scholar 

  13. Schmiegelow K, Levinsen MF, Attarbaschi A, Baruchel A, Devidas M, Escherich G, et al. Second malignant neoplasms after treatment of childhood acute lymphoblastic leukemia. J Clin Oncol. 2013;31:2469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blanco E, Beyene J, Maloney AM, Almeida R, Ethier MC, Winick N, et al. Non-relapse mortality in pediatric acute lymphoblastic leukemia: a systematic review and meta-analysis. Leuk Lymphoma. 2012;53:878–85.

    Article  PubMed  Google Scholar 

  15. te Winkel ML, Pieters R, Hop WC, de Groot-Kruseman HA, Lequin MH, van der Sluis IM, et al. Prospective study on incidence, risk factors, and long-term outcome of osteonecrosis in pediatric acute lymphoblastic leukemia. J Clin Oncol. 2011;29:4143–50.

    Article  Google Scholar 

  16. Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324:808–15.

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen K, Devidas M, Cheng SC, La M, Raetz EA, Carroll WL, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study. Leukemia. 2008;22:2142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E, et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a therapeutic advances in Childhood Leukemia Consortium Study. J Clin Oncol. 2010;28:648–54.

    Article  PubMed  Google Scholar 

  19. Schrappe M, Hunger SP, Pui CH, Saha V, Gaynon PS, Baruchel A, et al. Outcomes after induction failure in childhood acute lymphoblastic leukemia. N Engl J Med. 2012;366:1371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aries IM, Bodaar K, Karim SA, Chonghaile TN, Hinze L, Burns MA, et al. PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia. J Exp Med. 2018;215:3094–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ni Chonghaile T, Sarosiek KA, Vo TT, Ryan JA, Tammareddi A, Moore Vdel G, et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science. 2011;334:1129–33.

    Article  PubMed  CAS  Google Scholar 

  22. Vo TT, Ryan J, Carrasco R, Neuberg D, Rossi DJ, Stone RM, et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell. 2012;151:344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bhola PD, Mar BG, Lindsley RC, Ryan JA, Hogdal LJ, Vo TT, et al. Functionally identifiable apoptosis-insensitive subpopulations determine chemoresistance in acute myeloid leukemia. J Clin Invest. 2016;126:3827–36.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Place AE, Stevenson KE, Vrooman LM, Harris MH, Hunt SK, O’Brien JE, et al. Intravenous pegylated asparaginase versus intramuscular native Escherichia coli L-asparaginase in newly diagnosed childhood acute lymphoblastic leukaemia (DFCI 05-001): a randomised, open-label phase 3 trial. Lancet Oncol. 2015;16:1677–90.

    Article  CAS  PubMed  Google Scholar 

  25. Winter SS, Dunsmore KP, Devidas M, Eisenberg N, Asselin BL, Wood BL, et al. Safe integration of nelarabine into intensive chemotherapy in newly diagnosed T-cell acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0434. Pediatr Blood Cancer. 2015;62:1176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Losdyck E, Hornakova T, Springuel L, Degryse S, Gielen O, Cools J, et al. Distinct acute lymphoblastic leukemia (ALL)-associated Janus Kinase 3 (JAK3) mutants exhibit different cytokine-receptor requirements and JAK inhibitor specificities. J Biol Chem. 2015;290:29022–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Degryse S, de Bock CE, Cox L, Demeyer S, Gielen O, Mentens N, et al. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. Blood. 2014;124:3092–100.

    Article  CAS  PubMed  Google Scholar 

  28. Cante-Barrett K, Spijkers-Hagelstein JA, Buijs-Gladdines JG, Uitdehaag JC, Smits WK, van der Zwet J, et al. MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia. 2016;30:1832–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Degryse S, Bornschein S, de Bock CE, Leroy E, Vanden Bempt M, Demeyer S, et al. Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL. Blood. 2018;131:421–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Connor D, Moorman AV, Wade R, Hancock J, Tan RM, Bartram J, et al. Use of minimal residual disease assessment to redefine induction failure in pediatric acute lymphoblastic leukemia. J Clin Oncol. 2017;35:660–7.

    Article  PubMed  Google Scholar 

  31. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gutierrez A, Dahlberg SE, Neuberg DS, Zhang J, Grebliunaite R, Sanda T, et al. Absence of biallelic TCRgamma deletion predicts early treatment failure in pediatric T-cell acute lymphoblastic leukemia. J Clin Oncol. 2010;28:3816–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maude SL, Dolai S, Delgado-Martin C, Vincent T, Robbins A, Selvanathan A, et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood. 2015;125:1759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bond J, Graux C, Lhermitte L, Lara D, Cluzeau T, Leguay T, et al. Early response-based therapy stratification improves survival in adult early thymic precursor acute lymphoblastic leukemia: a Group for Research on Adult Acute Lymphoblastic Leukemia Study. J Clin Oncol. 2017;35:2683–91.

    Article  CAS  PubMed  Google Scholar 

  36. Burmester GR, Blanco R, Charles-Schoeman C, Wollenhaupt J, Zerbini C, Benda B, et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet. 2013;381:451–60.

    Article  CAS  PubMed  Google Scholar 

  37. Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 2012;367:495–507.

    Article  CAS  PubMed  Google Scholar 

  38. Sandborn WJ, Ghosh S, Panes J, Vranic I, Su C, Rousell S, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012;367:616–24.

    Article  CAS  PubMed  Google Scholar 

  39. Changelian PS, Flanagan ME, Ball DJ, Kent CR, Magnuson KS, Martin WH, et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science. 2003;302:875–8.

    Article  CAS  PubMed  Google Scholar 

  40. Telliez JB, Dowty ME, Wang L, Jussif J, Lin T, Li L, et al. Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem Biol. 2016;11:3442–51.

    Article  CAS  PubMed  Google Scholar 

  41. Robinson MF, Damjanov N, Stamenkovic B, Radunovic G, Kivitz A, Cox L, et al. Efficacy and Safety of PF-06651600 (Ritlecitinib), a Novel JAK3/TEC inhibitor, in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Rheumatol. 2020;72:1621–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26:127–32.

    Article  CAS  PubMed  Google Scholar 

  43. Bhola PD, Letai A. Mitochondria-judges and executioners of cell death sentences. Mol Cell. 2016;61:695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood . 2017;129:1113–23.

    Article  CAS  PubMed  Google Scholar 

  45. Dumon S, Santos SC, Debierre-Grockiego F, Gouilleux-Gruart V, Cocault L, Boucheron C, et al. IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line. Oncogene. 1999;18:4191–9.

    Article  CAS  PubMed  Google Scholar 

  46. Sanda T, Tyner JW, Gutierrez A, Ngo VN, Glover J, Chang BH, et al. TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Cancer Discov. 2013;3:564–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chetoui N, Boisvert M, Gendron S, Aoudjit F. Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway. Immunology. 2010;130:418–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takada K, Jameson SC. Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev. 2009;9:823–32.

    CAS  Google Scholar 

  49. Ito T, Deng X, Carr B, May WS. Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem. 1997;272:11671–3.

    Article  CAS  PubMed  Google Scholar 

  50. May WS, Tyler PG, Ito T, Armstrong DK, Qatsha KA, Davidson NE. Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of BCL2 alpha in association with suppression of apoptosis. J Biol Chem. 1994;269:26865–70.

    Article  CAS  PubMed  Google Scholar 

  51. Deng X, Ruvolo P, Carr B, May WS Jr. Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl2 kinases. Proc Natl Acad Sci USA. 2000;97:1578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Degryse S, de Bock CE, Demeyer S, Govaerts I, Bornschein S, Verbeke D, et al. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia. 2018;32:788–800.

    Article  CAS  PubMed  Google Scholar 

  53. Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res. 2007;13:1576–83.

    Article  CAS  PubMed  Google Scholar 

  54. Chonghaile TN, Roderick JE, Glenfield C, Ryan J, Sallan SE, Silverman LB, et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov. 2014;4:1074–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 2006;9:351–65.

    Article  CAS  PubMed  Google Scholar 

  56. Engelman JA, Settleman J. Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr Opin Genet Dev. 2008;18:73–9.

    Article  CAS  PubMed  Google Scholar 

  57. Bliss CI. The calculation of microbial assays. Bacteriol Rev. 1956;20:243–58.

  58. Li Y, Buijs-Gladdines JG, Cante-Barrett K, Stubbs AP, Vroegindeweij EM, Smits WK, et al. IL-7 receptor mutations and steroid resistance in pediatric T cell acute lymphoblastic leukemia: a genome sequencing study. PLoS Med. 2016;13:e1002200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Delgado-Martin C, Meyer LK, Huang BJ, Shimano KA, Zinter MS, Nguyen JV, et al. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia. 2017;31:2568–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van der Zwet JCG, Buijs-Gladdines J, Cordo V, Debets DO, Smits WK, Chen Z, et al. MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance. Leukemia. 2021;35:3394–405.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and families who provided samples for these studies. This work was supported by the V Foundation for Cancer Research, NIH R01 CA193651, and the Boston Children’s Hospital Translational Research Program. The Children’s Oncology Group work was supported by U10 CA98543 (COG Chair’s grant), U10 CA98413 (COG Statistical Center), U24 CA114766 (COG Specimen Banking), U10 CA 180886 (COG Operations Center), and U10 CA 180899 (COG Statistics and Data Center). SPH is the Jeffrey E. Perelman Distinguished Chair in the Department of Pediatrics, Children’s Hospital of Philadelphia. AG is the Louis K. Diamond Chair in Pediatric Hematology/Oncology at Boston Children’s Hospital.

Author information

Authors and Affiliations

Authors

Contributions

KB and AG conceived the project. KB, NY, AB, JL, TNC, and MB designed and performed experiments and interpreted data. KES and MD performed statistical analyses and interpreted data. MLL, SPH, BW, LBS, DTT, JPM, and AL aided in data collection of primary patient samples, and in analysis and interpretation of data. KB, NY, and AG wrote the paper with input from all co-authors.

Corresponding author

Correspondence to Alejandro Gutierrez.

Ethics declarations

Competing interests

SPH has received consulting fees from Novartis, honoraria from Amgen, Jazz Pharmaceuticals and Servier, and owns common stock in Amgen. LBS has received research funding from Novartis. DTT has served on advisory boards for BEAM Therapeutics, Janssen, and Sobi and receives research funding from Neoimmune Tech and BEAM Therapeutics. AL receives research support from AbbVie, AstraZeneca and Novartis, and is a cofounder and equity holder in Flash Therapeutics and Vivid Bioscience. AG receives research support from Astellas Pharma and is on an advisory board of Attivare Therapeutics. The authors have no other relevant conflicts of interest to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodaar, K., Yamagata, N., Barthe, A. et al. JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia. Leukemia 36, 1499–1507 (2022). https://doi.org/10.1038/s41375-022-01558-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01558-5

This article is cited by

Search

Quick links