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CHRONIC LYMPHOCYTIC LEUKEMIA

High expression level of ROR1 and ROR1-signaling associates
with venetoclax resistance in chronic lymphocytic leukemia
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Although the BH3-mimetic venetoclax is highly cytotoxic for chronic lymphocytic leukemia (CLL) cells, some patients with CLL fail to
clear minimal residual disease (MRD). We examined the CLL cells of seven such patients (CLL1-7) and found each had high-level
expression of ROR1. By examining the CLL cells from such patients prior to therapy at SC1 and then more than 1 year later (Sample
Collection 2 (SC2)), when they had progressive increases in MRD despite continued venetoclax therapy, we found the levels of ROR1
expressed on CLL cells at SC2 were significantly higher than that on CLL cells collected at SC1. At SC2, we also observed
upregulation of genes induced by Wnt5a-induced ROR1 signaling, including BCL2L1. Transduction of the CLL-cell-line MEC1 to
express ROR1 enhanced expression of target genes induced by ROR1-signaling, increased expression of BCL-XL, and enhanced
resistance to venetoclax, even in MEC1 made to express mutant forms of BCL2, which are associated with venetoclax resistance.
Treatment of primary CLL cells with Wnt5a also increased their resistance to venetoclax, an effect that could be inhibited by the
anti-ROR1 mAb (UC-961, zilovertamab). Collectively, these studies indicate that Wnt5a-induced ROR1-signaling can enhance
resistance to venetoclax therapy.

Leukemia (2022) 36:1609–1618; https://doi.org/10.1038/s41375-022-01543-y

INTRODUCTION
Venetoclax is the first-in-class inhibitor of BCL2 that has been
approved as treatment for patients with chronic lymphocytic
leukemia (CLL) [1]. Treatment with venetoclax can affect deep
clinical responses, often eradicating detectable minimal residual
disease (MRD), particularly when used in combination with an
anti-CD20 mAb [2–4], and/or inhibitors of BTK [5, 6]. Moreover,
over two-thirds of treated patients lack detectable MRD in the
blood or marrow after 1 year of venetoclax therapy. On the other
hand, about a quarter of all patients fail to clear detectable MRD
and are at risk for developing progressive disease (PD), even with
continued therapy [5, 7–13].
Contributing to drug resistance is the acquisition of mutations

in BCL2 affecting its capacity to bind venetoclax [14–16]. The CLL
cells from each of several venetoclax-resistant patients have
mutations in BCL2, most commonly BCL2G101V, generated by a
nonsynonymous mutation affecting a glycine to valine substitu-
tion at amino-acid-position 101 of BCL2. Venetoclax binds poorly
to the mutant BCL2 encoded by BCL2G101V and thus is less able to
induce CLL-cell apoptosis. For unexplained reasons, however, the
BCL2G101V mutation alone is rarely found at allelic frequencies
greater than 25% in the leukemia cells of patients who are

resistant to venetoclax. For example, Blombery and colleagues
described 11 patients with progressive CLL who had leukemia
cells with BCL2G101V and other oligoclonal BCL2 mutations [17].
However, only four of these patients had proportions of CLL cells
harboring BCL2 mutations that appeared greater than 50%. As
such, factors other than BCL2 mutations also apparently
contribute to venetoclax resistance.
With that in mind, recent studies found that CLL cells of

refractory patients appeared more resistant to the cytotoxic
effects of venetoclax when cultured with accessory cells found
in the leukemia microenvironment [15, 18]. Factors provided by
the leukemia microenvironment, such as Wnt5a [19], may
enhance resistance to venetoclax. Relevant in this regard is the
leukemia-cell expression of the receptor tyrosine kinase-like
orphan receptor (ROR1), which can serve as a receptor for
Wnt5a [20]. Wnt5a can induce ROR1-signaling leading to
expression of ERK1/2 and NF-κB target genes [19, 21], the
expression of which may mitigate the cytotoxicity of venetoclax
[22]. Moreover, expression of ROR1 in mouse models of CLL
enhances activation of signaling networks that induce expres-
sion of genes implicated in embryonic- and tumor-cell
proliferation and survival [23].
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The CLL cells from over 90% of all patients express ROR1;
[20, 24] however, there is heterogeneity in the expression levels of
ROR1 on leukemia cells among different patients [24]. The CLL
cells that express high levels of ROR1 (ROR1Hi CLL) have
differences in gene expression from CLL cells that express low-
to-negligible levels of ROR1 (ROR1Lo CLL); such gene expression
differences also are observed between ROR1-expressing leukemia
cells that develop in Eµ-ROR1/TCL1-trangenic mice versus the
ROR1-negative leukemia cells of Eµ-TCL1 transgenic mice [20, 24].
More recently, genes targeted through activation of
ROR1 signaling (e.g., ERK1/2 or NF-κB target genes) have been
defined [19, 21], including the BCL2L1 gene encoding BCL-XL,
which may enhance resistance to venetoclax in CLL or mantle-cell-
lymphoma [25–28]. Consistent with this notion, Blombery and
colleagues found a case of venetoclax-resistant CLL that lacked
detectable BCL2 mutations, but had high levels of BCL-XL [15].
We hypothesize that ROR1-signaling may enhance expression

of genes that enhance resistance to cytotoxic drugs; a corollary of
this hypothesis is that inhibition of ROR1-signaling may mitigate
resistance to therapy. In this study, we examined the leukemia-cell
expression of ROR1 and ROR1-signaling of patients who failed to
clear MRD after more than a year of therapy with venetoclax.

MATERIALS AND METHODS
Patients samples
Samples from patients who satisfied diagnostic criteria for CLL [29], were
collected in accordance with the Declaration of Helsinki for the protection
of human subjects and the Institutional Review Board (IRB) of the
University of California San Diego (IRB approval number 110658).

Immunophenotyping
ROR1 expression levels were assessed via flow cytometry, as described
[30]. The expression of ROR1 was detected using Alexa-647-conjugated
anti-ROR1 mAb (4A5) (BD Biosciences). CLL cells also were analyzed for
CD19, CD20, and CD23, using mAbs conjugated to allophycocyanin (APC),
Peridinin-chlorophyll-protein (PerCp), fluorescein isothiocyanate (FITC), or
phycoerythrin (PE), respectively (BD Biosciences). Fluorochrome-conju-
gated, isotype control mAbs of irrelevant specificity were used to monitor
for nonspecific staining. The relative expression levels of ROR1 were
reported as absolute mean fluorescence intensity (AbMFI), which is
determined by subtracting the mean fluorescence intensity of the CLL
cells stained with a nonspecific antibody of the same isotype from the
mean fluorescence intensity of the CLL cells stained with the anti-ROR1
antibody. Data were acquired on a FACSCelesta (BD Biosciences) and
analyzed using FlowJo software (v.9.3.2. FlowJo).

RNA extraction and RNA-Seq
Negative isolation of CLL cells to ≥95% purity was performed prior to
extraction of RNA using RNeasy Plus Micro Kit (Qiagen). We performed RNA
sequencing with sequencing depth of at least 30 million reads per sample
to assure 90–95% sensitivity in detecting variants [31]. Data were analyzed
by Rosalind (https://rosalind.onramp.bio/), with a HyperScale architecture
developed by OnRamp Bioinformatics, Inc. (San Diego, CA). Reads were
trimmed using cutadapt [32]. Quality scores were assessed using FastQC
[33]. Reads were aligned to the Homo sapiens genome build hg19 using
STAR [34]. Individual sample reads were quantified using Htseq [35] and
normalized via Relative Log Expression (RLE) using DESeq2 R library [36].
DEseq2 was also used to calculate fold changes and p-values. The
accession number for the RNA-seq data reported in this paper is
GSE192685 (http://www.ncbi.nlm.nih.gov/geo/).

Gene-set-enrichment analysis
We performed gene-set-enrichment analysis (GSEA) on ERK1/2, and NF-κB
target genes and on genes induced by binding of a Wnt protein to a frizzled
family receptor on the surface of the target cell, followed by propagation of the
signal via beta-catenin (canonical Wnt signaling pathway) or via effectors other
than beta-catenin (non-canonical Wnt signaling pathway) [19, 21, 37–42]. Each
gene set was considered significant when the false discovery rate (FDR) was
less than 25% [43]. The FDR q value was adjusted for gene set size andmultiple
hypothesis testing.

Immunoblot analysis
Cells were lysed using RIPA lysis buffer. Protein concentration was
determined using the DC (Detergent compatible) protein assay (BioRad,
Hercules, CA, USA). Equal amounts of protein lysates (20 μg) were
separated by gel electrophoresis using a NuPAGE Novex 4–12% Bis-Tris
Midi Gel (Invitrogen) and transferred to nitrocellulose or polyvinylidene
fluoride membranes. Immunoblots were probed using anti-BCL-XL anti-
body (Cat#2764), anti-BCL2 antibody (Cat#4223) from Cell Signaling
Technology (Danvers, MA), or anti-β-actin (sc-47778) from Cell Santa Cruz
Biotechnology (Dallas, TX).

In vitro viability assay
MEC1 and MEC1-ROR1 viability in response to venetoclax treatment was
assessed using CellTiter-Glo 2.0 Assay (Promega). Cells were seeded in
black 96-well plates at a concentration of 1 × 105 cells/well and treated
with escalating doses of venetoclax. Viability was measured 24 h after
treatment using a Tecan Infinite M200 plate reader (Tecan).

Ex vivo viability experiments
ROR1-high primary CLL cells were cultured in RPMI media (Life
Technologies) supplemented with 10% FBS at a density of 4 × 106 cells/
mL. CLL cells were cultured in serum-free media, with or without UC-961
(zilovertamab at 20 μg/mL) and with or without exogenous Wnt5a (200 ng/
mL, R&D Systems). Venetoclax was added at concentrations ranging from
0.5 nM to 4 nM. Viability at 16 h was determined as the percentage of
viable cells relative to that observed in cultures treated with DMSO without
venetoclax, as described [30].

BCL2 constructs and transfection assays
Green-fluorescent protein (GFP)-tagged pRP mammalian gene expression
vectors encoding either BCL2WT, BCL2A113P, or BCL2G101V (VectorBuilder,
Shenandoah, TX) were transfected into MEC1 or MEC1-ROR1 cell lines
using Neon Transfection System (ThermoFisher Scientific). For this, 2 × 106

cells were washed in PBS and re-suspended in 100 μL of R solution. 12.5 μg
of each plasmid were transfected using the following parameters: 1350 V;
30ms, 1 pulse. GFP expression was assessed at 24 h by flow cytometry as a
control to monitor the efficiency of transfection. At that time, transfected
cells were treated with DMSO or venetoclax (5 µM). After 24 h, the cells
were stained with Annexin V-PE (BioVision) for 5 min and then analyzed by
flow cytometry. For each plasmid, we determined the percentage of
specific venetoclax-induced apoptosis of the transfected cells (% GFP+

Annexin+).

Statistical analyses
Statistical analysis was carried out using GraphPad Prism software v6
(GraphPad Software) and p-values were determined using the paired
Student’s t test and considered significant with a p-value of less than 0.05.

RESULTS
Assessment Of ROR1 And ROR1-regulated target genes before
and after development of resistance to venetoclax
We studied the CLL cells of seven patients who were treated with
venetoclax-based therapy, but failed to clear detectable minimal
residual disease (MRD) and then developed progressive increases
in MRD while continuing therapy with venetoclax, after a median
of 2 years of treatment (Supplementary Fig. S1). Prior to
venetoclax therapy, these patients had relapsed disease with a
median of three prior therapies (range 1–5). The CLL cells of six
patients used unmutated immunoglobulin heavy chain genes (U-
IGHV) and the CLL cells of the 7th patient used a lightly mutated
IGHV (M-IGHV) encoded by IGHV3-21 (Table 1). We assessed for
expression of ROR1 by flow cytometry on CLL cells obtained from
patients CLL1-7 prior to therapy at (Sample Collection 1 (SC1)). We
found each expressed high levels of ROR1, with a mean level
comparable to that of CLL cells within the top 25th percentile of
ROR1 among 1568 patients examined in our reported cohort (top
quartile, n= 392) (Fig. 1A) [24]. The probability that all seven
samples would express ROR1 in the top quartile is (0.25)7, or
0.00006.
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We compared the expression levels of ROR1 on CLL cells from
these patients before therapy at SC1 with that of CLL cells
obtained more than 1 year later (Sample Collection 2 (SC2)), when
they were noted to have progressive increases in MRD despite
continued venetoclax therapy (Fig. 1B). The mean level of ROR1
expressed by CLL cells at SC2 was significantly higher than that of
the CLL cells from the same patients collected at SC1 (p= 0.002,
Paired t test) (Fig. 1C).

Assessment of ROR1-regulated target genes in ROR1Hi and
ROR1Lo CLL
We examined the transcriptomes of CLL cells from patients with
ROR1Lo CLL cells (N= 12) versus those with ROR1Hi CLL (N= 12)
for their relative expression of ERK1/2 and NF-κB target genes

[19, 21, 39]. This analysis revealed enrichment of ERK1/2 and NF-κB
target genes, including BCL2L1, in ROR1Hi cases relative to that of
ROR1Lo cases (Supplementary Fig. S2).
We also examined the transcriptomes of negatively-selected

CLL cells from patients who developed venetoclax resistance at
SC1 and SC2. The GSEA of the transcriptomes of CLL cells for each
patient also demonstrated significant increases at SC2 relative to
SC1 in the expression of genes targeted by activation of ERK1/2,
NF-κB, and non-canonical Wnt signaling [19, 21, 37–42] (Fig. 1D,
Supplementary Table S1). However, we did not observe a
significant increase at SC2 relative to SC1 in the expression of
genes induced by activation of the canonical β-catenin/Wnt-
signaling pathway (Supplementary Table S1). Moreover, for each
patient, we found that the CLL cells at SC2 had significantly higher

Fig. 1 Expression of ROR1 and ROR1-regulated target genes. A Data are shown as the median with interquartile range of ROR1 expression
on CLL cells in a cohort of 1,568 cases [24] divided in 4 quartiles (Q1, Q2, Q3, and Q4) each comprised 392 CLL cases and in patients CLL1-7.
B Representative histograms depict the fluorescence of cells stained with an isotype control mAb (gray) or anti-ROR1 (4A5) at diagnosis
(green, CLL Dx), at SC1 (red), and at SC2 (blue). C ROR1 expression reported as AbMFI measured by flow cytometry prior to therapy (SC1) and
at MRD progression on venetoclax therapy (SC2). D GSEA of the genes expressed in negatively-selected CLL cells collected at MRD
progression on venetoclax therapy (SC2) versus those expressed by the negatively-selected CLL cells collected from the same patients prior to
treatment (SC1). GSEA on the transcriptomes of CLL cells collected at SC2 versus SC1, evaluating for differences in the expression of a set of
genes associated with ROR1 regulated pathways [19, 21, 39]. Gene-set size (SIZE), enrichment score (ES), normalized ES (NES), nominal p value
(NOM p-val), and FDR q value (FDR q) are indicated. E Volcano plot showing differences in gene expression between SC2 versus SC1. The log2
of the fold change (log2 Fold Change) is on the X axis, and the negative log10 of p-value (-log10 p-Value) is on the Y axis. Vertical dashed lines
indicate fold change of 1.2 and −1.2, respectively. Horizontal dashed line indicates a p-value of 0.05. Each dot represents a gene within the
comparison performed. The coloring on the dots reflects whether each gene is significantly overexpressed (green) or under-expressed
(purple) in SC2 versus SC1, and those in black are genes that were not significantly overexpressed or under-expressed in SC2 versus SC1. The
significant overexpression of BCL2L1 at SC2 is indicated. F BCL-XL protein expression levels assessed by immunoblot analysis at SC1 and SC2 in
three cases. The membranes were probed with a monoclonal antibody specific for BCL-XL or β-actin, as indicated on the left margin. The
density of the β-actin band was used to normalize band density for BCL-XL for each sample. The integrated optical density (IOD) ratios of the
band densities of BCL-XL/β-actin normalized with respect to SC1 for each sample are indicated at the bottom of BCL-XL immunoblots and
presented in the bar graph in panel H. G The IOD ratios of BCL-XL are shown as the mean ± SD of SC1 or SC2 of three samples. Statistical
significance was determined by Paired Student’s t test.
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levels of BCL2L1 and BCL-XL protein than the CLL cells at SC1 (p=
0.009 and p= 0.01, respectively) (Fig. 1E–G, Supplementary
Table S2).

Venetoclax resistance in MEC1 and MEC1-ROR1
Prior studies found that the CLL-derived cell line MEC1 lacks
expression of ROR1 [44], but has constitutive expression of Wnt5a,
which can induce ROR1-signaling [20]. MEC1 cells were trans-
duced to express ROR1 to generate MEC1-ROR1 cells (Fig. 2A).
Transcriptome analyses revealed that MEC-ROR1 had enhanced
expression of ERK1/2 and NF-κB target genes [19, 21, 39],
including BCL2L1, relative to that of MEC1 cells (Fig. 2B, C,
Supplementary Table S3). Moreover, we observed a significant
increase in MEC1-ROR1 relative to MEC1 cells in their expression of
genes induced by activation of non-canonical Wnt signaling
pathways, but not genes induced through activation of the
canonical β-catenin/Wnt signaling pathway [38] (Supplementary
Table S3). Relative to MEC1 cells transduced with a control vector,
MEC1-ROR1 expressed significantly higher levels of BCL-XL, but
comparable levels of BCL2 (p= 0.004 and p= 0.2, respectively)
(Fig. 2D–F). Collectively, these results indicate that expression of
ROR1 was sufficient to enhance expression of NF-κB target genes,
including BCL2L1, in MEC1 leukemia cells.

MEC1 leukemia cells already are relatively resistant to veneto-
clax compared to the primary leukemia cells of patients with CLL
[45]. Nonetheless, we examined whether the expression of ROR1
could enhance the resistance of this cell line to venetoclax in vitro.
For this we cultured MEC1 and MEC-ROR1 in media containing
venetoclax at concentrations ranging from 0.05 μM to 5 μM. We
found that MEC1-ROR1 cells had a significantly higher viability
than MEC1 cells at each concentration of venetoclax examined
(Fig. 2G).

Evaluation of BCL2 mutations before or after development of
venetoclax resistance
We also examined for BCL2 mutations in the CLL cells collected at
SC1 and SC2 from each of the seven patients who developed
resistance to this drug. We identified the BCL2G101V mutation in the
CLL cells collected at SC2 from each of three patients at allelic
frequencies of less than 20%. Moreover, one of these three
patients had subclonal co-occurrence of this BCL2G101V mutation
together with a BCL2A113G mutation, affecting an amino acid
change of A-to-G at position 113 of BCL2. Each of these BCL2
mutations were found at allelic frequencies of less than 25%
(Supplementary Table S4) [17]. These mutations were not
detected in any of the patient samples collected at SC1.

Fig. 2 Relative expression of ROR1-regulated target genes and venetoclax sensitivity of MEC1 versus MEC1-ROR1. A ROR1 protein
expression levels (AbMFI) measured by flow cytometry on MEC1 and MEC1-ROR1 cells labeled with A647-conjugated anti-ROR1 mAb (blue
and red histograms, respectively) or A647-conjugated nonspecific IgG of the same isotype (green and orange histograms). B GSEA on the
transcriptomes of MEC1 versus MEC1-ROR1, evaluating for differences in the expression of genes associated with ROR1 regulated pathways
[19, 21, 39]. Gene-set size (SIZE), enrichment score (ES), normalized ES (NES), nominal p value (NOM p-val), and FDR q value (FDR q) are
indicated. C Volcano plot showing differences in gene expression between MEC1-ROR1 versus MEC1. The log2 of the fold change (Log2 Fold
Change) is on the X axis, and the negative log of p-value (-Log10 p-Value) is on the Y axis. Vertical dashed lines indicate fold change of 1.2 and
−1.2, respectively. Horizontal dashed line indicates a p-Value of 0.05. Each dot represents a gene within the comparison performed. The
coloring on the dots reflects whether each gene is significantly overexpressed (green) or under-expressed (purple) in MEC1-ROR1 versus
MEC1, and those in black are genes that were not significantly overexpressed or under-expressed in MEC1-ROR1 versus MEC1. The significant
overexpression of BCL2L1 gene in MEC1-ROR1 is indicated. D BCL-XL and BCL2 protein expression levels assessed by immunoblot analysis on
MEC1 and MEC1-ROR1 cells. The membranes were probed with a monoclonal antibody specific for BCL-XL, BCL2, or β-actin, as indicated on
the left margin. The density of the β-actin band was used to normalize band density for BCL-XL or BCL2. The IOD ratios of the band densities
of BCL-XL/β-actin normalized with respect to that of MEC1 cells are indicated at the bottom of BCL-XL immunoblots and presented in the bar
graph in panel (E). The IOD ratios of the band densities of BCL2/β-actin normalized with respect to that of MEC1 cells are indicated at the
bottom of BCL2 immunoblots and presented in the bar graph in panel (F). E, F The IOD ratios of BCL-XL (E) or BCL2 (F) are shown as the mean
± SD of three independent immunoblots. Statistical significance was determined by Student’s t test. G MEC1 (blue) and MEC1-ROR1 (red) cells
were treated with different concentrations of venetoclax (0.05 μM to 5 μM) and cell viability was assessed by CellTiter-Glo viability assay at 24
h. The fraction surviving venetoclax therapy is expressed relative to that of the untreated (DMSO) control. Data are summarized as the mean ±
SEM of three independent experiments.
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In the CLL cells of a fourth patient, we found a non-reported
nonsynonymous BCL2 mutation (BCL2A113P) that results in an
alanine to proline substitution at amino acid position 113 of BCL2.
Review of the known tertiary structure of BCL2 revealed that this
mutation causes a substitution of proline for an alanine at a
position contiguous to the BH3-binding pocket (Fig. 3A). Unlike
the other BCL2 mutations identified in the three aforementioned
samples, BCL2A113P was detected at an allelic frequency of 49.3%,
indicating that virtually all of the leukemia cells within this sample
harbored this mutation. This mutation, however, was not
identified in the CLL cells collected from this patient at SC1
(Supplementary Table S4). Finally, in three of the seven CLL cases,
we did not identify any mutations in BCL2 at SC2, as noted for the
CLL cells of some patients resistant to venetoclax [17].
We transfected MEC1 versus MEC1-ROR1 cells with GFP-tagged

plasmids encoding either wild type (WT) BCL2 (BCL2WT) or one of the
mutant BCL2 identified in the CLL cells of patients resistant to
venetoclax and assessed the capacity of each to enhance the
resistance of these cells to treatment with venetoclax in vitro. We
assessed the cells for expression of GFP at 24 h after transfection by
flow cytometry; this revealed the transfected MEC1 or MEC1-ROR1
cells each expressed highly comparable amounts of GFP encoded
by each of these three different plasmids, which encoded BCL2WT,
BCL2A113P, or BCL2G101V (Fig. 3B, C). Transfection with each of the
three different plasmids encoding BCL2WT, BCL2A113P, or BCL2G101V

did not change the BCL-XL protein expression ratios in MEC1-ROR1
cells relative to that in MEC1 cells (Supplementary Fig. S3). We
examined the sensitivity of each of these transfected cells to the
cytotoxic effects of venetoclax added to a final concentration of 5
µM in the culture media in each of five separate experiments. We
observed GFP+ MEC1 cells or MEC1-ROR1 cells transfected with
BCL2WT, BCL2A113P or BCL2G101V had significantly higher viability

following treatment with venetoclax than GFP-negative MEC1 cells
or MEC1-ROR1 cells that lacked expression of the plasmid
transgenes (e.g., BCL2WT, BCL2A113P, or BCL2G101V) (Fig. 3D). However,
MEC1-ROR1 cells had higher viability than MEC1 cells independent
of whether they expressed the plasmid transgenes. Collectively,
these results indicate that expression of ROR1 can enhance the
viability of the venetoclax-treated leukemia cells, including leuke-
mia cells that expressed mutant forms of BCL2 associated with
venetoclax resistance.

Effect of zilovertamab on Wnt5a-induced venetoclax
resistance of ROR1Hi CLL cells
We examined whether treatment of CLL cells with Wnt5a, with or
without the anti-ROR1 mAb zilovertamab, could affect their
sensitivity to venetoclax. For this, we cultured CLL cells overnight
in serum-free media with carrier protein, with or without recombi-
nant Wnt5a, and with or without zilovertamab. Treatment with
Wnt5a enhance the resistance of CLL cells to venetoclax at all
concentrations tested (Fig. 4A), an effect that could be inhibited by
zilovertamab (Fig. 4A). Immunoblot analysis of lysates of CLL cells
treated without or with recombinant Wnt5a and without or with
zilovertamab revealed that Wnt5a treatment increased BCL-XL
protein expression and that zilovertamab inhibited Wnt5a-induced
increases in BCL-XL (Fig. 4B, C). Collectively, these studies indicate
that Wnt5a can enhance resistance of ROR1Hi CLL cells to venetoclax
by increasing BCL-XL expression, and that this effect could be
inhibited by this anti-ROR1 mAb.

DISCUSSION
In this study, we found that the pre-treatment CLL cells of seven
patients who subsequently failed to clear MRD each expressed

Fig. 3 Relative sensitivity of MEC1 versus MEC1-ROR1 cells following transfection with GFP/BCL2-expression vectors. A Ribbon
representation of α-helices that form the BCL2 binding groove, indicating the locations of Gly101 (orange spheres) and A113 (teal spheres).
The structure is that of venetoclax analogue (yellow) bound to BCL2 (PDB:4MAN). B, C Representative histograms show the GFP fluorescence
of MEC1 (B) or MEC1-ROR1 (C) cells transfected with BCL2 variants (blue, green, and orange histograms, respectively) or control (red
histograms). D Average percent of viable GFP- or GFP+ cells in MEC1 or MEC1-ROR1 following treatment with 5 μM venetoclax. MEC1 (blue) or
MEC1-ROR1 (red) were transfected with BCL2WT, BCL2A113P, or BCL2G101V. The percent of viable cells after 24 h treatment is indicated. Data are
shown as the mean ± SEM of five independent experiments. Statistical significance was determined by Student’s t test.
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levels of ROR1 comparable to those in the top 25th percentile of a
large cohort of patients with CLL, indicating a significant
association between the subsequent failure to clear MRD with
high-level expression of ROR1 prior to therapy (p= (0.25)7, or
0.00006). Furthermore, we found the CLL cells collected ≥1 year of
venetoclax therapy had even higher levels of ROR1 than did the
pre-treatment CLL cells of each patient. These observations reveal
an association between high-level leukemia-cell expression of
ROR1 and failure to clear detectable MRD after a year or more of
venetoclax therapy.
CLL cells that express high levels of ROR1 also are noted more

commonly to express unmutated IGHV, have complex karyotypes,
and/or inactivating mutations in TP53 than CLL cells with low-
ROR1 [24]. Such features also are associated with venetoclax
resistance [46], raising the question of whether such features
instead account for the noted association between high-level
ROR1 expression and venetoclax resistance. However, it should be
noted that patients with CLL cells with high-level expression of
ROR1 have accelerated disease progression and shorter overall
survival than patients with low-to-negligible levels of ROR1
independent of IGHV mutation status [24]. Similarly, there also
may be an independent causal relationship between high-level
expression of ROR1 and development of venetoclax resistance,
leading us to hypothesize that ROR1-signaling per se may mitigate
the cytotoxicity of venetoclax [47].
Our analysis of CLL cells before (SC1) and after 1 or more years

of venetoclax therapy (SC2) showed the CLL cells at SC2 expressed
even higher levels of ROR1 than the CLL cells collected at SC1. We
found that such higher-level expression of ROR1 also associated
increased expression of ERK1/2- and NF-κB- target genes, which
our prior studies found could be induced by Wnt5a-ROR1
signaling [19, 21]. We identified BCL2L1, encoding the BCL-XL
protein, among the NF-κB- target genes associated with expres-
sion of ROR1. The increased expression of BCL2L1 induced by
Wnt5a-activation of ROR1 may account in part for the enhanced
resistance to venetoclax of leukemia cells that express high levels

of ROR1. Furthermore, we found that CLL cells at SC2 had higher
expression of genes implicated in the non-canonical Wnt
signaling, but not genes induced through activation of the
canonical β-catenin/Wnt signaling pathway; we found changes in
gene expression similar to those in SC2 versus SC12 in MEC1-ROR1
versus MEC1 cells, indicating that ROR1 alone was sufficient to
induce such changes in gene expression for this cell line, which
has constitutive high-level expression of Wnt5a.
It should be emphasized that high-level expression of ROR1 is not

solely responsible for venetoclax resistance. As noted in prior studies
[15, 17, 48, 49], our study also revealed that BCL2G101V mutations in
the CLL cells collected at SC2 were present in three out of seven
patients and that each of these mutations were found at allelic
frequencies less than 25%. In addition to the Gly101Val codon
variant, subclonal mutation Ala113Gly also was observed in the CLL
cells of one patient, as noted in other patients with drug resistance
[17, 50]. We also identified a previously non-reported nonsynon-
ymous BCL2 mutation (BCL2A113P) at an allelic frequency of 49.3%,
which in contrast to previously noted mutations was present at an
allelic frequency indicating that nearly all the CLL cells of this patient
expressed this mutant allele of BCL2. Like the other previously
identified mutations in BCL2 associated with venetoclax resistance,
this mutation encodes a residue close to the site bound by
venetoclax, thereby potentially mitigating the capacity of this drug
to bind and inhibit BCL2. Because the BCL2A113P was found at an
allelic frequency of 49.3%, this mutant form of BCL2 was found in
virtually all CLL cells at SC2, but in none of the CLL cells at SC1,
demonstrating strong selection of this mutant BCL2 in the treated
CLL population. However, the wide range of allelic frequencies of
BCL2 mutations observed in our study (1.5–49.3%) and the absence
of BCL2mutations at SC2 in three out of seven patients indicate that
acquired changes other than mutations in BCL2 also contribute to
drug resistance.
Previous studies revealed that overexpression of WT or mutated

BCL2 in CLL cells or cell lines could increase their resistance to the
cytotoxic effects of venetoclax [15, 48]. Similarly, we found that MEC1

Fig. 4 Zilovertamab inhibits Wnt5a-induced venetoclax-resistance and expression of ROR1-regulated target genes in CLL cells. A CLL
cells expressing ROR1 (n= 13) were cultured in serum-free media and treated with increasing venetoclax doses (0.5 nM to 4 nM), with or
without zilovertamab (UC-961, 20 μg/mL) in the presence or absence of exogenous Wnt5a (200 ng/mL). CLL cell viability is represented as the
percentage of cells after 16 h of treatment with venetoclax or carrier (DMSO) for each sample. Data are shown as mean ± SEM of three
independent experiments. For each dose of venetoclax (Ven), statistical significance was determined by two-way Anova, by comparing the
percentage of viable cells after 16 h of treatment with Wnt5a (+Wnt5a) minus the percentage of viable cells after 16 h with Wnt5a and
zilovertamab (+Wnt5a +UC-961). B BCL-XL protein expression levels assessed by immunoblot analysis of lysates prepared from ROR1Hi CLL
cells (representative of three patients) treated without (−) or with (+) Wnt5a and without (−) or with (+) zilovertamab (UC-961). The
membranes were probed with a monoclonal antibody specific for BCL-XL or β-actin, as indicated on the left margin. The density of the β-actin
band was used to normalize band density for BCL-XL. The IOD ratios of the band densities of BCL-XL/β-actin normalized with respect to that of
CLL cells without Wnt5a or zilovertamab (UC-961) are indicated at the bottom of BCL-XL immunoblots and presented in panel G. C The IOD
ratios of BCL-XL are shown as the mean ± SD of three samples without (−) or with (+) Wnt5a and without (−) or with (+) zilovertamab (UC-
961). Statistical significance was determined by Paired Student’s t test.
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or MEC1-ROR1 cells transfected to express high levels of BCL2WT,
BCL2A113P, or BCL2G101V also had reduced sensitivity to venetoclax
compared to the parent MEC1 or MEC1-ROR1 cells. Despite the
noted resistance of MEC1 cells to venetoclax [45], we still found that
MEC1-ROR1 were even less sensitive to this drug, indicating that the
expression of ROR1 per se can enhance drug resistance.
Previous studies showed that leukemia microenvironment

could inhibit the capacity of venetoclax to induce CLL-cell
apoptosis [15, 18]. Moreover, CLL cells of refractory patients
appeared more resistant to venetoclax when cultured with
accessory cells found within the leukemia microenvironment
[15, 18]. Wnt5a, which may be provided by such accessory cells
[19], can induce ROR1-signaling, which this and prior studies show
enhance expression of ERK1/2 and NF-κB target genes [19, 21].
Moreover, treatment of ROR1Hi CLL cells with Wnt5a increased
expression of BCL-XL and enhanced the resistance to venetoclax
in CLL cells. Treatment of the CLL with the inhibitory anti-ROR1
mAb zilovertamab, on the other hand, inhibited Wnt5a-induced
increases in BCL-XL and resistance to venetoclax, indicating that
this effect of Wnt5a is mediated via ROR1.
Collectively, these studies indicate that expression of ROR1 and

ROR1-signaling may reduce the sensitivity of leukemia cells to
venetoclax, potentially helping to contribute to venetoclax
resistance. We hypothesize that strategies targeting ROR1 may
enhance the efficacy of venetoclax-based regimens and/or help
mitigate the risk of acquiring resistance to venetoclax therapy.
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