Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

In vivo anti-tumor effect of PARP inhibition in IDH1/2 mutant MDS/AML resistant to targeted inhibitors of mutant IDH1/2

Abstract

Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDHmi). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDHmi alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDHmi-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDHmi. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Olaparib targets IDH2-mutant AML blasts and leukemia initiating cells in vivo.
Fig. 2: Enasidenib resistant AML is sensitive to olaparib administration both in vitro and in vivo.
Fig. 3: Olaparib remains effective in a second enasidenib-resistant IDH2-mutant AML PDX.
Fig. 4: PARP inhibition is also effective in IDH1-mutant AML and IDH1/2-mutant MDS.

Similar content being viewed by others

Data availability

All relevant data are available from the authors upon reasonable request.

References

  1. Showalter MR, Hatakeyama J, Cajka T, VanderVorst K, Carraway KL, Fiehn O, et al. Replication study: the common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Elife. 2017;6:e26030.

  2. Winer ES, Stone RM. Novel therapy in Acute myeloid leukemia (AML): moving toward targeted approaches. Ther Adv Hematol. 2019;10:2040620719860645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Clark O, Yen K, Mellinghoff IK. Molecular pathways: isocitrate dehydrogenase mutations in cancer. Clin Cancer Res. 2016;22:1837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DiNardo CD, Jabbour E, Ravandi F, Takahashi K, Daver N, Routbort M, et al. IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression. Leukemia. 2016;30:980–4.

    Article  CAS  PubMed  Google Scholar 

  5. Losman JA, Kaelin WG Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 2013;27:836–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rakheja D, Medeiros LJ, Bevan S, Chen W. The emerging role of d-2-hydroxyglutarate as an oncometabolite in hematolymphoid and central nervous system neoplasms. Front Oncol. 2013;3:169.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Molenaar RJ, Radivoyevitch T, Maciejewski JP, van Noorden CJ, Bleeker FE. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim Biophys Acta. 2014;1846:326–41.

    CAS  PubMed  Google Scholar 

  9. Wang Y, Wild AT, Turcan S, Wu WH, Sigel C, Klimstra DS, et al. Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas. Sci Adv. 2020;6:eaaz3221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Norsworthy KJ, Luo L, Hsu V, Gudi R, Dorff SE, Przepiorka D, et al. FDA approval summary: ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutation. Clin Cancer Res. 2019;25:3205–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kim ES. Enasidenib: first global approval. Drugs. 2017;77:1705–11.

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Gong Y. Isocitrate dehydrogenase inhibitors in acute myeloid leukemia. Biomark Res. 2019;7:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Upadhyay VA, Brunner AM, Fathi AT. Isocitrate dehydrogenase (IDH) inhibition as treatment of myeloid malignancies: Progress and future directions. Pharm Ther. 2017;177:123–8.

    Article  CAS  Google Scholar 

  14. Amatangelo MD, Quek L, Shih A, Stein EM, Roshal M, David MD, et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood. 2017;130:732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choe S, Wang H, DiNardo CD, Stein EM, de Botton S, Roboz GJ, et al. Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML. Blood Adv. 2020;4:1894–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quek L, David MD, Kennedy A, Metzner M, Amatangelo M, Shih A, et al. Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib. Nat Med. 2018;24:1167–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harding JJ, Lowery MA, Shih AH, Schvartzman JM, Hou S, Famulare C, et al. Isoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibition. Cancer Disco. 2018;8:1540–7.

    Article  CAS  Google Scholar 

  18. Intlekofer AM, Shih AH, Wang B, Nazir A, Rustenburg AS, Albanese SK, et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature. 2018;559:125–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9:eaal2463.

  20. Sulkowski PL, Oeck S, Dow J, Economos NG, Mirfakhraie L, Liu Y, et al. Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature. 2020;582:586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sulkowski PL, Sundaram RK, Oeck S, Corso CD, Liu Y, Noorbakhsh S, et al. Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat Genet. 2018;50:1086–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Molenaar RJ, Radivoyevitch T, Nagata Y, Khurshed M, Przychodzen B, Makishima H, et al. IDH1/2 Mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitors. Clin Cancer Res. 2018;24:1705–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Philip B, Yu DX, Silvis MR, Shin CH, Robinson JP, Robinson GL, et al. Mutant IDH1 promotes glioma formation in vivo. Cell Rep. 2018;23:1553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song Y, Rongvaux A, Taylor A, Jiang T, Tebaldi T, Balasubramanian K, et al. A highly efficient and faithful MDS patient-derived xenotransplantation model for pre-clinical studies. Nat Commun. 2019;10:366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shih AH, Meydan C, Shank K, Garrett-Bakelman FE, Ward PS, Intlekofer AM, et al. Combination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemia. Cancer Disco. 2017;7:494–505.

    Article  CAS  Google Scholar 

  26. Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol. 2014;32:364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wingett SW, Andrews S. FastQ screen: a tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Benjamin D, Sato T, Cibulskis K, Getz G, Stewart C, Lichtenstein L. Calling somatic SNVs and indels with Mutect2. bioRxiv 2019. https://doi.org/10.1101/861054.

  32. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat. 2013;34:57–65.

    Article  CAS  PubMed  Google Scholar 

  34. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941–7.

    Article  CAS  PubMed  Google Scholar 

  35. Robinson JT, Thorvaldsdottir H, Wenger AM, Zehir A, Mesirov JP. Variant review with the integrative genomics viewer. Cancer Res. 2017;77:e31–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saito Y, Ellegast JM, Rafiei A, Song Y, Kull D, Heikenwalder M, et al. Peripheral blood CD34(+) cells efficiently engraft human cytokine knock-in mice. Blood. 2016;128:1829–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ellegast JM, Rauch PJ, Kovtonyuk LV, Muller R, Wagner U, Saito Y, et al. inv(16) and NPM1mut AMLs engraft human cytokine knock-in mice. Blood. 2016;128:2130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu Y, Kwintkiewicz J, Liu Y, Tech K, Frady LN, Su YT, et al. Chemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repair. Cancer Res. 2017;77:1709–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tateishi K, Higuchi F, Miller JJ, Koerner MVA, Lelic N, Shankar GM, et al. The alkylating chemotherapeutic temozolomide induces metabolic stress in IDH1-mutant cancers and potentiates NAD(+) depletion-mediated cytotoxicity. Cancer Res. 2017;77:4102–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  CAS  PubMed  Google Scholar 

  41. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  CAS  PubMed  Google Scholar 

  42. Wang HY, Tang K, Liang TY, Zhang WZ, Li JY, Wang W, et al. The comparison of clinical and biological characteristics between IDH1 and IDH2 mutations in gliomas. J Exp Clin Cancer Res. 2016;35:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stein EM, DiNardo CD, Fathi AT, Pollyea DA, Stone RM, Altman JK, et al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood. 2019;133:676–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Madala HR, Punganuru SR, Arutla V, Misra S, Thomas TJ, Srivenugopal KS. Beyond brooding on oncometabolic havoc in IDH-mutant gliomas and AML: current and future therapeutic strategies. Cancers. 2018;10:49.

  45. Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, et al. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol. 2013;31:635–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dick JE. Stem cell concepts renew cancer research. Blood. 2008;112:4793–807.

    Article  CAS  PubMed  Google Scholar 

  47. Saito Y, Uchida N, Tanaka S, Suzuki N, Tomizawa-Murasawa M, Sone A, et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol. 2010;28:275–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yale Pathology Tissue Services especially A. Brooks for research histology services. We thank Yale Animal Resources Center, especially P. Ranney, J. Fonck for animal care. We thank Yale Flow Cytometry Core, especially Lesley Devine, Diane Trotta and Chao Wang for flow cytometry analysis. We thank our patients for donating blood and bone marrow to research. This study was supported in part by the NIH/NIDDK R01DK102792 (to S.H.), The Frederick A. Deluca Foundation and the Vera and Joseph Dresner Foundation (to S.H.), the Howard Hughes Medical Institute (to R.A.F), the General Program of the National Natural Science Foundation of China (Grant No.82170137, to Y.S.), and the Leukemia and Lymphoma Society and the NIH/NCI R01CA266604 (to S.H. and R.S.B.). X.F. was supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 81801588). Y.G. was supported by the American Society of Hematology Scholar Award. T.T. was supported by AIRC under MFAG 2020 (project ID. 24883). This study was supported by the Animal Modeling Core and the Pilot and Feasibility Program of the Yale Cooperative Center of Excellence in Hematology (NIDDK U54DK106857).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SH, RSB, and YS; Methodology: SH, RG, and YS; Investigation: YS, RG, WL, YG, GB, XW, XF, NC, RS, AP, TT, and PM; Data analysis: YS, RG, and SH; Validation: YS, RG, and SH; Writing—original draft: SH, RG, YS; Writing—review & editing: SH, RSB, RG, YS; Funding acquisition: SH and RSB; Resources: RG, AP, AMZ, RAF, and TP; Project administration: SH and RSB; Supervision: SH and RSB.

Corresponding authors

Correspondence to Yuanbin Song or Stephanie Halene.

Ethics declarations

Competing interests

Zeidan: AMZ received research funding from Celgene/BMS, Abbvie, Astex, Pfizer, Medimmune/AstraZeneca, Boehringer-Ingelheim, Trovagene/Cardiff Oncology, Incyte, Takeda, Novartis, Aprea, Amgen, and ADC Therapeutics. AMZ participated in advisory boards, had a consultancy with, and/or received honoraria from AbbVie, Otsuka, Pfizer, Celgene/BMS, Jazz, Incyte, Agios, Boehringer-Ingelheim, Novartis, Acceleron, Astellas, Daiichi Sankyo, Cardinal Health, Taiho, Seattle Genetics, BeyondSpring, Trovagene/Cardiff Oncology, Takeda, Ionis, Amgen, Tyme, Aprea, Kura, Janssen, Gilead, and Epizyme. AMZ received travel support for meetings from Pfizer, Novartis, and Trovagene. Flavell: RAF is an advisor to Glaxo Smith Kline, Zai labs and Ventus Therapeutics. Prebet: Boehringer Ingelheim: Research Funding; Novartis: Honoraria; Pfizer: Honoraria; Agios: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy, Honoraria, Research Funding; Genentech: Consultancy; Tetraphase: Consultancy; Bristol-Myers Squibb: Honoraria, Research Funding. Bindra: Cybrexa Therapeutics: Consultancy, Equity Ownership. Athena Therapeutics: Equity Ownership. Halene: FORMA Therapeutics: Consultancy.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gbyli, R., Song, Y., Liu, W. et al. In vivo anti-tumor effect of PARP inhibition in IDH1/2 mutant MDS/AML resistant to targeted inhibitors of mutant IDH1/2. Leukemia 36, 1313–1323 (2022). https://doi.org/10.1038/s41375-022-01536-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01536-x

This article is cited by

Search

Quick links