Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CHRONIC LYMPHOCYTIC LEUKEMIA

Activation and expansion of T-follicular helper cells in chronic lymphocytic leukemia nurselike cell co-cultures

Abstract

Interactions between chronic lymphocytic leukemia (CLL) cells and T-cell subsets in the lymph node microenvironment are thought to play a central role in disease biology. To study these interactions in a model of the CLL lymph node microenvironment, we characterized T-cell subsets in CLL nurselike cell (NLC) co-cultures. We focused on T-follicular helper (Tfh) cells, which are characterized by CXCR5 expression and localization to B-cell follicles. In co-cultures from 28 different CLL patients, we detected an expansion of Tfh cells based on PD-1, BCL6, and ICOS expression, with increased IL-21 and downmodulated CD40L surface expression. Regulatory T cells (Treg), which promote immune tolerance, also expanded in NLC co-cultures. T-cell receptor (TR) gene repertoire analyses confirmed the clonal expansion of CD4+ T cells, with an enrichment of TR clonotypes commonly expanded also in primary CLL samples. Multicolor confocal microscopy revealed that Tfh, but not Treg co-localize with proliferating CLL cells in CLL lymph node sections. Collectively, these data provide new insight into the cellular and molecular cross-talk between CLL and T-cell subsets, resulting in clonal expansion of T-helper cells and interaction of Tfh cells with proliferating CLL cells which may open new avenues for therapeutic targeting.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: T cell subsets in NLC co-cultures.
Fig. 2: Tfh cells acquire a germinal and memory phenotype in NLC co-culture.
Fig. 3: Germinal and memory Tfh cells show expression of BCL6 and ICOS.
Fig. 4: T cells in NLC co-cultures modulate CD40L and acquire markers of activation and proliferation.
Fig. 5: TR gene repertoire changes associated with clonal expansion of CD4+ T-helper cells in NLC co-cultures.
Fig. 6: Close physical association between proliferative CLL and Tfh cells in LN tissue.
Fig. 7: Tregs in LN tissue are in close spatial proximity to others CD4+ cells.

References

  1. Burger JA. Treatment of chronic lymphocytic leukemia. N Engl J Med. 2020;383:460–73.

    Article  CAS  PubMed  Google Scholar 

  2. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117:563–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Herndon TM, Chen SS, Saba NS, Valdez J, Emson C, Gatmaitan M, et al. Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood. Leukemia. 2017;31:1340–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D, et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Investig. 2005;115:755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patten PE, Buggins AG, Richards J, Wotherspoon A, Salisbury J, Mufti GJ, et al. CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood. 2008;111:5173–81.

    Article  CAS  PubMed  Google Scholar 

  6. Tsukada N, Burger JA, Zvaifler NJ, Kipps TJ. Distinctive features of “nurselike” cells that differentiate in the context of chronic lymphocytic leukemia. Blood. 2002;99:1030–7.

    Article  CAS  PubMed  Google Scholar 

  7. Ruan J, Hyjek E, Kermani P, Christos PJ, Hooper AT, Coleman M, et al. Magnitude of stromal hemangiogenesis correlates with histologic subtype of non-Hodgkin’s lymphoma. Clin Cancer Res. 2006;12:5622–31.

    Article  CAS  PubMed  Google Scholar 

  8. Burger JA, Wiestner A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer. 2018;18:148–67.

    Article  CAS  PubMed  Google Scholar 

  9. Allen CD, Okada T, Cyster JG. Germinal-center organization and cellular dynamics. Immunity. 2007;27:190–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Young C, Brink R. The unique biology of germinal center B cells. Immunity. 2021;54:1652–64.

  11. Crotty S. T follicular helper cell biology: a decade of discovery and diseases. Immunity. 2019;50:1132–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sivina M, Xiao L, Kim E, Vaca A, Chen SS, Keating MJ, et al. CXCL13 plasma levels function as a biomarker for disease activity in patients with chronic lymphocytic leukemia. Leukemia. 2021;35:1610–20.

  13. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014;41:529–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi YS, Yang JA, Yusuf I, Johnston RJ, Greenbaum J, Peters B, et al. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. J Immunol. 2013;190:4014–26.

    Article  CAS  PubMed  Google Scholar 

  15. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34:108–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6:345–52.

    Article  CAS  PubMed  Google Scholar 

  17. Lim HW, Hillsamer P, Kim CH. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J Clin Investig. 2004;114:1640–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wollenberg I, Agua-Doce A, Hernandez A, Almeida C, Oliveira VG, Faro J, et al. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J Immunol. 2011;187:4553–60.

    Article  CAS  PubMed  Google Scholar 

  19. Yin Q, Sivina M, Robins H, Yusko E, Vignali M, O’Brien S, et al. Ibrutinib therapy increases T cell repertoire diversity in patients with chronic lymphocytic leukemia. J Immunol. 2017;198:1740–7.

    Article  CAS  PubMed  Google Scholar 

  20. Hartmann EM, Rudelius M, Burger JA, Rosenwald A. CCL3 chemokine expression by chronic lymphocytic leukemia cells orchestrates the composition of the microenvironment in lymph node infiltrates. Leuk Lymphoma. 2016;57:563–71.

    Article  CAS  PubMed  Google Scholar 

  21. Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F, et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol. 2002;32:1403–13.

    Article  CAS  PubMed  Google Scholar 

  22. Bagnara D, Kaufman MS, Calissano C, Marsilio S, Patten PE, Simone R, et al. A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood. 2011;117:5463–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vlachonikola E, Stamatopoulos K, Chatzidimitriou AT. Cells in chronic lymphocytic leukemia: a two-edged sword. Front Immunol. 2020;11:612244.

    Article  CAS  PubMed  Google Scholar 

  24. Vardi A, Vlachonikola E, Karypidou M, Stalika E, Bikos V, Gemenetzi K, et al. Restrictions in the T-cell repertoire of chronic lymphocytic leukemia: high-throughput immunoprofiling supports selection by shared antigenic elements. Leukemia. 2017;31:1555–61.

    Article  CAS  PubMed  Google Scholar 

  25. de Weerdt I, Hofland T, de Boer R, Dobber JA, Dubois J, van Nieuwenhuize D, et al. Distinct immune composition in lymph node and peripheral blood of CLL patients is reshaped during venetoclax treatment. Blood Adv. 2019;3:2642–52.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood. 2000;96:2655–63.

    Article  CAS  PubMed  Google Scholar 

  27. Burger JA, Quiroga MP, Hartmann E, Burkle A, Wierda WG, Keating MJ, et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood. 2009;113:3050–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burkle A, Niedermeier M, Schmitt-Graff A, Wierda WG, Keating MJ, Burger JA. Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood. 2007;110:3316–25.

    Article  PubMed  Google Scholar 

  29. Nishio M, Endo T, Tsukada N, Ohata J, Kitada S, Reed JC, et al. Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha. Blood. 2005;106:1012–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Locci M, Havenar-Daughton C, Landais E, Wu J, Kroenke MA, Arlehamn CL, et al. Human circulating PD-1+CXCR3−CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity. 2013;39:758–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:621–63.

    Article  CAS  PubMed  Google Scholar 

  32. Nurieva RI, Chung Y. Understanding the development and function of T follicular helper cells. Cell Mol Immunol. 2010;7:190–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lim HW, Lee J, Hillsamer P, Kim CH. Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells. J Immunol. 2008;180:122–9.

    Article  CAS  PubMed  Google Scholar 

  34. Cantwell M, Hua T, Pappas J, Kipps TJ. Acquired CD40-ligand deficiency in chronic lymphocytic leukemia. Nat Med. 1997;3:984–9.

    Article  CAS  PubMed  Google Scholar 

  35. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jadidi-Niaragh F, Ghalamfarsa G, Yousefi M, Tabrizi MH, Shokri F. Regulatory T cells in chronic lymphocytic leukemia: implication for immunotherapeutic interventions. Tumour Biol. 2013;34:2031–9.

    Article  CAS  PubMed  Google Scholar 

  38. DeWitt WS, Emerson RO, Lindau P, Vignali M, Snyder TM, Desmarais C, et al. Dynamics of the cytotoxic T cell response to a model of acute viral infection. J Virol. 2015;89:4517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rytlewski J, Deng S, Xie T, Davis C, Robins H, Yusko E, et al. Model to improve specificity for identification of clinically-relevant expanded T cells in peripheral blood. PLoS ONE. 2019;14:e0213684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giudicelli V, Duroux P, Ginestoux C, Folch G, Jabado-Michaloud J, Chaume D, et al. IMGT/LIGM-DB, the IMGT comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res. 2006;34:D781–4.

    Article  CAS  PubMed  Google Scholar 

  41. Bagaev DV, Vroomans RMA, Samir J, Stervbo U, Rius C, Dolton G, et al. VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium. Nucleic Acids Res. 2020;48:D1057–62.

    Article  PubMed  Google Scholar 

  42. Rezvany MR, Jeddi-Tehrani M, Wigzell H, Osterborg A, Mellstedt H. Leukemia-associated monoclonal and oligoclonal TCR-BV use in patients with B-cell chronic lymphocytic leukemia. Blood. 2003;101:1063–70.

    Article  CAS  PubMed  Google Scholar 

  43. Basso K, Dalla-Favera R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol Rev. 2012;247:172–83.

    Article  PubMed  Google Scholar 

  44. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, et al. Bcl6 mediates the development of T follicular helper cells. Science. 2009;325:1001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alterauge D, Bagnoli JW, Dahlstrom F, Bradford BM, Mabbott NA, Buch T, et al. Continued Bcl6 expression prevents the transdifferentiation of established Tfh cells into Th1 cells during acute viral infection. Cell Rep. 2020;33:108232.

    Article  CAS  PubMed  Google Scholar 

  46. Choi J, Diao H, Faliti CE, Truong J, Rossi M, Belanger S, et al. Bcl-6 is the nexus transcription factor of T follicular helper cells via repressor-of-repressor circuits. Nat Immunol. 2020;21:777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pascutti MF, Jak M, Tromp JM, Derks IA, Remmerswaal EB, Thijssen R, et al. IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells. Blood. 2013;122:3010–9.

    Article  CAS  PubMed  Google Scholar 

  48. Tromp JM, Tonino SH, Elias JA, Jaspers A, Luijks DM, Kater AP, et al. Dichotomy in NF-kappaB signaling and chemoresistance in immunoglobulin variable heavy-chain-mutated versus unmutated CLL cells upon CD40/TLR9 triggering. Oncogene. 2010;29:5071–82.

    Article  CAS  PubMed  Google Scholar 

  49. Ahearne MJ, Willimott S, Pinon L, Kennedy DB, Miall F, Dyer MJ, et al. Enhancement of CD154/IL4 proliferation by the T follicular helper (Tfh) cytokine, IL21 and increased numbers of circulating cells resembling Tfh cells in chronic lymphocytic leukaemia. Br J Haematol. 2013;162:360–70.

    Article  CAS  PubMed  Google Scholar 

  50. Weber JP, Fuhrmann F, Feist RK, Lahmann A, Al Baz MS, Gentz LJ, et al. ICOS maintains the T follicular helper cell phenotype by down-regulating Kruppel-like factor 2. J Exp Med. 2015;212:217–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu D, Xu H, Shih C, Wan Z, Ma X, Ma W, et al. T-B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature. 2015;517:214–8.

    Article  CAS  PubMed  Google Scholar 

  52. Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med. 2011;17:975–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sage PT, Paterson AM, Lovitch SB, Sharpe AH. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity. 2014;41:1026–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Han S, Toker A, Liu ZQ, Ohashi PS. Turning the tide against regulatory T cells. Front Oncol. 2019;9:279.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4(+) T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther. 2021;28:5–17.

    Article  CAS  PubMed  Google Scholar 

  56. Vardi A, Agathangelidis A, Stalika E, Karypidou M, Siorenta A, Anagnostopoulos A, et al. Antigen selection shapes the T-cell repertoire in chronic lymphocytic leukemia. Clin Cancer Res. 2016;22:167–74.

    Article  CAS  PubMed  Google Scholar 

  57. Vardi A, Vlachonikola E, Papazoglou D, Psomopoulos F, Kotta K, Ioannou N, et al. T-cell dynamics in chronic lymphocytic leukemia under different treatment modalities. Clin Cancer Res. 2020;26:4958–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all the patients who provided samples for this study. They also thank Kostas Stamatopoulos for contributing data from the TR clonotype database held at the Institute of Applied Biosciences at CERTH and for critical reading the paper. The authors thank the Nikon Imaging Facility at Kings College London. The Advanced Cytometry & Sorting Core Facility at MD Anderson is supported by NCI P30CA016672. PEMP is supported by MRC Grant MR/T005106/1. This work was supported by the ERA-NET on Translational Cancer Research (TRANSCAN-2) project code 5041673 (EV) and the generous philanthropic contributions to The University of Texas MD Anderson Cancer Center Moon Shots ProgramTM (JAB), and in part by CLL Global Research Foundation grants (JAB).

Author information

Authors and Affiliations

Authors

Contributions

AMV performed NLC co-cultures, flow cytometry, isolation of lymphocyte populations, DNA extraction, TCR repertoire analyses, collected clinical information, analyzed the data and results, designed the figures, and wrote the paper with JAB; NI performed microscopy and analyzed the data with AR; MS assisted with data interpretation and reviewed the manuscript. EV assisted with TCR repertoire data interpretation. KCD contributed to study design. EK contributed with sample collection, storage, and reviewed the paper. DL and QM contributed to study design. AF, ZE, and WGW contributed to clinical patient management. PP contributed with CLL LNs sample collection. JAB designed and supervised the study. All authors reviewed the paper and approved the final version.

Corresponding author

Correspondence to Jan A. Burger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaca, A.M., Ioannou, N., Sivina, M. et al. Activation and expansion of T-follicular helper cells in chronic lymphocytic leukemia nurselike cell co-cultures. Leukemia 36, 1324–1335 (2022). https://doi.org/10.1038/s41375-022-01519-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01519-y

This article is cited by

Search

Quick links