Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STEM CELL BIOLOGY

The GPI-anchored protein CD109 protects hematopoietic progenitor cells from undergoing erythroid differentiation induced by TGF-β

Abstract

Although a glycosylphosphatidylinositol-anchored protein (GPI-AP) CD109 serves as a TGF-β co-receptor and inhibits TGF-β signaling in keratinocytes, the role of CD109 on hematopoietic stem progenitor cells (HSPCs) remains unknown. We studied the effect of CD109 knockout (KO) or knockdown (KD) on TF-1, a myeloid leukemia cell line that expresses CD109, and primary human HSPCs. CD109-KO or KD TF-1 cells underwent erythroid differentiation in the presence of TGF-β. CD109 was more abundantly expressed in hematopoietic stem cells (HSCs) than in multipotent progenitors and HSPCs of human bone marrow (BM) and cord blood but was not detected in mouse HSCs. Erythroid differentiation was induced by TGF-β to a greater extent in CD109-KD cord blood or iPS cell-derived megakaryocyte–erythrocyte progenitor cells (MEPs) than in wild-type MEPs. When we analyzed the phenotype of peripheral blood MEPs of patients with paroxysmal nocturnal hemoglobinuria who had both GPI(+) and GPI(−) CD34+ cells, the CD36 expression was more evident in CD109 MEPs than CD109+ MEPs. In summary, CD109 suppresses TGF-β signaling in HSPCs, and the lack of CD109 may increase the sensitivity of PIGA-mutated HSPCs to TGF-β, thus leading to the preferential commitment of erythroid progenitor cells to mature red blood cells in immune-mediated BM failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Erythroid differentiation of TF-1 cells induced by TGF-β and GPI-AP depletion.
Fig. 2: Effect of transient CD109 KD by siRNA on the erythroid differentiation of TF-1 cells and UCB HSPCs.
Fig. 3: Effect of transient CD109 KD on the erythroid differentiation of iPSC-derived HSPCs.
Fig. 4: Erythroid differentiation of CD109+ and CD109 HSPCs from patients with PNH.

Similar content being viewed by others

References

  1. Tutelman PR, Aubert G, Milner RA, Dalal BI, Schultz KR, Deyell RJ. Paroxysmal nocturnal haemoglobinuria phenotype cells and leucocyte subset telomere length in childhood acquired aplastic anaemia. Br J Haematol. 2014;164:717–21.

    CAS  PubMed  Google Scholar 

  2. Kulagin A, Lisukov I, Ivanova M, Golubovskaya I, Kruchkova I, Bondarenko S, et al. Prognostic value of paroxysmal nocturnal haemoglobinuria clone presence in aplastic anaemia patients treated with combined immunosuppression: results of two-centre prospective study. Br J Haematol. 2014;164:546–54.

    CAS  PubMed  Google Scholar 

  3. Sugimori C, Chuhjo T, Feng X, Yamazaki H, Takami A, Teramura M, et al. Minor population of CD55-CD59- blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood. 2006;107:1308–14.

    CAS  PubMed  Google Scholar 

  4. Gargiulo L, Papaioannou M, Sica M, Talini G, Chaidos A, Richichi B, et al. Glycosylphosphatidylinositol-specific, CD1d-restricted T cells in paroxysmal nocturnal hemoglobinuria. Blood. 2013;121:2753–61.

    CAS  PubMed  Google Scholar 

  5. Hosokawa K, Katagiri T, Sugimori N, Ishiyama K, Sasaki Y, Seiki Y, et al. Favorable outcome of patients who have 13q deletion: a suggestion for revision of the WHO ‘MDS-U’ designation. Haematologica. 2012;97:1845–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang H, Kozono DE, O’Connor KW, Vidal-Cardenas S, Rousseau A, Hamilton A, et al. TGF-beta inhibition rescues hematopoietic stem cell defects and bone marrow failure in fanconi anemia. Cell Stem Cell. 2016;18:668–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. de Bruin AM, Voermans C, Nolte MA. Impact of interferon-gamma on hematopoiesis. Blood. 2014;124:2479–86.

    PubMed  Google Scholar 

  8. Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Garbe A, Spyridonidis A, Mobest D, Schmoor C, Mertelsmann R, Henschler R. Transforming growth factor-beta 1 delays formation of granulocyte-macrophage colony-forming cells, but spares more primitive progenitors during ex vivo expansion of CD34+ haemopoietic progenitor cells. Br J Haematol. 1997;99:951–8.

    CAS  PubMed  Google Scholar 

  10. Batard P, Monier MN, Fortunel N, Ducos K, Sansilvestri-Morel P, Phan T, et al. TGF-(beta)1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. J Cell Sci. 2000;113:383–90.

    CAS  PubMed  Google Scholar 

  11. Sitnicka E, Ruscetti FW, Priestley GV, Wolf NS, Bartelmez SH. Transforming growth factor beta 1 directly and reversibly inhibits the initial cell divisions of long-term repopulating hematopoietic stem cells. Blood. 1996;88:82–8.

    CAS  PubMed  Google Scholar 

  12. Fortunel NO, Hatzfeld A, Hatzfeld JA. Transforming growth factor-beta: pleiotropic role in the regulation of hematopoiesis. Blood. 2000;96:2022–36.

    CAS  PubMed  Google Scholar 

  13. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J. Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell. 2006;125:929–41.

    CAS  PubMed  Google Scholar 

  14. Finnson KW, Tam BY, Liu K, Marcoux A, Lepage P, Roy S, et al. Identification of CD109 as part of the TGF-beta receptor system in human keratinocytes. FASEB J. 2006;20:1525–7.

    CAS  PubMed  Google Scholar 

  15. Murray LJ, Bruno E, Uchida N, Hoffman R, Nayar R, Yeo EL, et al. CD109 is expressed on a subpopulation of CD34+ cells enriched in hematopoietic stem and progenitor cells. Exp Hematol. 1999;27:1282–94.

    CAS  PubMed  Google Scholar 

  16. Zhang JM, Murakumo Y, Hagiwara S, Jiang P, Mii S, Kalyoncu E, et al. CD109 attenuates TGF-beta1 signaling and enhances EGF signaling in SK-MG-1 human glioblastoma cells. Biochem Biophys Res Commun. 2015;459:252–8.

    CAS  PubMed  Google Scholar 

  17. Mii S, Murakumo Y, Asai N, Jijiwa M, Hagiwara S, Kato T, et al. Epidermal hyperplasia and appendage abnormalities in mice lacking CD109. Am J Pathol. 2012;181:1180–9.

    CAS  PubMed  Google Scholar 

  18. Chuang CH, Greenside PG, Rogers ZN, Brady JJ, Yang D, Ma RK, et al. Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis. Nat Med. 2017;23:291–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Litvinov IV, Bizet AA, Binamer Y, Jones DA, Sasseville D, Philip A. CD109 release from the cell surface in human keratinocytes regulates TGF-beta receptor expression, TGF-beta signalling and STAT3 activation: relevance to psoriasis. Exp Dermatol. 2011;20:627–32.

    CAS  PubMed  Google Scholar 

  20. Hagiwara S, Murakumo Y, Mii S, Shigetomi T, Yamamoto N, Furue H, et al. Processing of CD109 by furin and its role in the regulation of TGF-beta signaling. Oncogene. 2010;29:2181–91.

    CAS  PubMed  Google Scholar 

  21. Xue Q, Yu C, Wang Y, Liu L, Zhang K, Fang C, et al. miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3beta pathway by targeting Rap2a. Sci Rep. 2016;6:26781.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K, et al. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol. 1989;140:323–34.

    CAS  PubMed  Google Scholar 

  23. Klampfer L, Zhang J, Nimer SD. GM-CSF rescues TF-1 cells from growth factor withdrawal-induced, but not differentiation-induced apoptosis: the role of BCL-2 and MCL-1. Cytokine. 1999;11:849–55.

    CAS  PubMed  Google Scholar 

  24. Mori Y, Chen JY, Pluvinage JV, Seita J, Weissman IL. Prospective isolation of human erythroid lineage-committed progenitors. Proc Natl Acad Sci USA. 2015;112:9638–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Manz MG, Miyamoto T, Akashi K, Weissman IL. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA. 2002;99:11872–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Majeti R, Park CY, Weissman IL. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell. 2007;1:635–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  Google Scholar 

  28. Oida T, Weiner HL. Depletion of TGF-beta from fetal bovine serum. J Immunol Methods. 2010;362:195–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Espinoza JL, Elbadry MI, Chonabayashi K, Yoshida Y, Katagiri T, Harada K, et al. Hematopoiesis by iPSC-derived hematopoietic stem cells of aplastic anemia that escape cytotoxic T-cell attack. Blood Adv. 2018;2:390–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu L, Liu X, Ren X, Tian Y, Chen Z, Xu X, et al. Smad2 and Smad3 have differential sensitivity in relaying TGFbeta signaling and inversely regulate early lineage specification. Sci Rep. 2016;6:21602.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Frick CL, Yarka C, Nunns H, Goentoro L. Sensing relative signal in the Tgf-beta/Smad pathway. Proc Natl Acad Sci USA. 2017;114:E2975–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohshima Y, Yajima I, Kumasaka MY, Yanagishita T, Watanabe D, Takahashi M, et al. CD109 expression levels in malignant melanoma. J Dermatol Sci. 2010;57:140–2.

    CAS  PubMed  Google Scholar 

  33. Bizet AA, Liu K, Tran-Khanh N, Saksena A, Vorstenbosch J, Finnson KW, et al. The TGF-beta co-receptor, CD109, promotes internalization and degradation of TGF-beta receptors. Biochim Biophys Acta. 2011;1813:742–53.

    CAS  PubMed  Google Scholar 

  34. Vorstenbosch J, Al-Ajmi H, Winocour S, Trzeciak A, Lessard L, Philip A. CD109 overexpression ameliorates skin fibrosis in a mouse model of bleomycin-induced scleroderma. Arthritis Rheum. 2013;65:1378–83.

    CAS  PubMed  Google Scholar 

  35. Zhou S, da Silva SD, Siegel PM, Philip A. CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Sci Rep. 2019;9:16317.

    PubMed  PubMed Central  Google Scholar 

  36. Yamazaki S, Iwama A, Takayanagi S, Eto K, Ema H, Nakauchi H. TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood. 2009;113:1250–6.

    CAS  PubMed  Google Scholar 

  37. Langer JC, Henckaerts E, Orenstein J, Snoeck HW. Quantitative trait analysis reveals transforming growth factor-beta2 as a positive regulator of early hematopoietic progenitor and stem cell function. J Exp Med. 2004;199:5–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hosokawa K, Mizumaki H, Elbadry MI, Saito C, Espinoza JL, Thi Thanh Dao A, et al. Clonal hematopoiesis by SLIT1-mutated hematopoietic stem cells due to a breakdown of the autocrine loop involving Slit1 in acquired aplastic anemia. Leukemia. 2019;33:2732–66.

    PubMed  Google Scholar 

  39. Geutskens SB, Andrews WD, van Stalborch AM, Brussen K, Holtrop-de Haan SE, Parnavelas JG, et al. Control of human hematopoietic stem/progenitor cell migration by the extracellular matrix protein Slit3. Lab Investig. 2012;92:1129–39.

    CAS  PubMed  Google Scholar 

  40. Shibata F, Goto-Koshino Y, Morikawa Y, Komori T, Ito M, Fukuchi Y, et al. Roundabout 4 is expressed on hematopoietic stem cells and potentially involved in the niche-mediated regulation of the side population phenotype. Stem Cells. 2009;27:183–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Khurana S, Margamuljana L, Joseph C, Schouteden S, Buckley SM, Verfaillie CM. Glypican-3-mediated inhibition of CD26 by TFPI: a novel mechanism in hematopoietic stem cell homing and maintenance. Blood. 2013;121:2587–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mine T, Harada K, Matsumoto T, Yamana H, Shirouzu K, Itoh K, et al. CDw108 expression during T-cell development. Tissue Antigens. 2000;55:429–36.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by MEXT KAKENHI (Grant-in-Aid for Scientific Research (B), Grant Number: 24390243) to SN, MEXT KAKENHI (Grant-in-Aid for Young Scientists (B), Grant Number: 26860363) to TK, MEXT KAKENHI (Grant-in-Aid for Young Scientists, Grant Number: 17K16184 and 19K17823) to KH, MEXT KAKENHI (Grant-in-Aid for Scientific Research (C), Grant Number: 18K08318) to HY. We are grateful to the following doctors providing us with technical advice: Prof. Toshio Kitamura (The institute of Medial Sciences, The University of Tokyo, Japan) and Shinji Mii (Nagoya University). We thank the patients and donors and their physicians for contributing to this study and the Advanced Preventive Medical Sciences Research Center, Kanazawa University for the use of facilities. MT is a Ph.D. candidate at Kanazawa University, and this work is submitted in partial fulfillment of the requirements for the Ph.D.

Author information

Authors and Affiliations

Authors

Contributions

MT, KH, NN, NT, RU, HY, and SN collected clinical data and blood and BM samples. MT, KH, MATN, NN, LE, MIE, and MM, performed most of the in vitro experiments. KM, TK, and AH, performed in vivo experiments. MO and HF collected cord blood samples. KC and YY generated induced pluripotent stem cells. MT, KH, and SN designed the research and wrote the paper. All authors critically reviewed the paper and checked the final version. MT, KH, and MATN contributed equally to this work.

Corresponding author

Correspondence to Shinji Nakao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanabe, M., Hosokawa, K., Nguyen, M.A.T. et al. The GPI-anchored protein CD109 protects hematopoietic progenitor cells from undergoing erythroid differentiation induced by TGF-β. Leukemia 36, 847–855 (2022). https://doi.org/10.1038/s41375-021-01463-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01463-3

This article is cited by

Search

Quick links