Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oncostatin M regulates hematopoietic stem cell (HSC) niches in the bone marrow to restrict HSC mobilization

Abstract

We show that pro-inflammatory oncostatin M (OSM) is an important regulator of hematopoietic stem cell (HSC) niches in the bone marrow (BM). Treatment of healthy humans and mice with granulocyte colony-stimulating factor (G-CSF) dramatically increases OSM release in blood and BM. Using mice null for the OSM receptor (OSMR) gene, we demonstrate that OSM provides a negative feed-back acting as a brake on HSPC mobilization in response to clinically relevant mobilizing molecules G-CSF and CXCR4 antagonist. Likewise, injection of a recombinant OSM molecular trap made of OSMR complex extracellular domains enhances HSC mobilization in poor mobilizing C57BL/6 and NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice. Mechanistically, OSM attenuates HSC chemotactic response to CXCL12 and increases HSC homing to the BM signaling indirectly via BM endothelial and mesenchymal cells which are the only cells expressing OSMR in the BM. OSM up-regulates E-selectin expression on BM endothelial cells indirectly increasing HSC proliferation. RNA sequencing of HSCs from Osmr−/− and wild-type mice suggest that HSCs have altered cytoskeleton reorganization, energy usage and cycling in the absence of OSM signaling in niches. Therefore OSM is an important regulator of HSC niche function restraining HSC mobilization and anti-OSM therapy combined with current mobilizing regimens may improve HSPC mobilization for transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OSM protein is increased upon G-CSF induced HSPC mobilization in humans and mice.
Fig. 2: OSM is highly expressed by neutrophils in the mobilized BM.
Fig. 3: Enhanced HSPC mobilization in response to G-CSF in Osmr−/− mice.
Fig. 4: In vivo neutralization of OSM with OSM-trap enhances HSPC mobilization in response to G-CSF.
Fig. 5: Deletion of Osmr gene enhances HSPC mobilization in response to Plerixafor+G-CSF.
Fig. 6: OSMR is only expressed by stromal cells in the BM however HSPCs from Osmr−/− mice display increased chemotaxis in vitro and reduced BM homing in vivo.
Fig. 7: Differential expression of genes in sorted LKS + FLT3 CD48 HSCs from the BM of naïve WT and Osmr−/− mice.
Fig. 8: HSCs are more quiescent in Osmr−/− mice.

Similar content being viewed by others

Data availability

The RNA sequencing datasets generated in this study are deposited to NCBI GEO database (GSE157579).

References

  1. Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017;17:573–90.

    Article  CAS  PubMed  Google Scholar 

  2. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508:269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Forristal CE, Nowlan B, Jacobsen RN, Barbier V, Walkinshaw G, Walkley CR, et al. HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α. Leukemia. 2015;29:1366–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481:457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495:231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495:227–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hatzfeld J, Li ML, Brown EL, Sookdeo H, Levesque JP, O’Toole T, et al. Release of early human hematopoietic progenitors from quiescence by antisense transforming growth factor beta 1 or Rb oligonucleotides. J Exp Med. 1991;174:925–9.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20:1321–6.

    Article  CAS  PubMed  Google Scholar 

  9. Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18:1651–7.

    Article  CAS  PubMed  Google Scholar 

  10. Ulyanova T, Scott LM, Priestley GV, Jiang Y, Nakamoto B, Koni PA, et al. VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin. Blood. 2005;106:86–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yao L, Setiadi H, Xia L, Laszik Z, Taylor FB, McEver RP. Divergent inducible expression of P-selectin and E-selectin in mice and primates. Blood. 1999;94:3820–8.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka M, Hirabayashi Y, Sekiguchi T, Inoue T, Katsuki M, Miyajima A. Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood. 2003;102:3154–62.

    Article  CAS  PubMed  Google Scholar 

  13. Minehata K, Takeuchi M, Hirabayashi Y, Inoue T, Donovan PJ, Tanaka M, et al. Oncostatin M maintains the hematopoietic microenvironment and retains hematopoietic progenitors in the bone marrow. Int J Hematol. 2006;84:319–27.

    Article  CAS  PubMed  Google Scholar 

  14. Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ, et al. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest. 2010;120:582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sims NA, Quinn JM. Osteoimmunology: oncostatin M as a pleiotropic regulator of bone formation and resorption in health and disease. Bonekey Rep. 2014;3:527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guihard P, Boutet MA, Brounais-Le Royer B, Gamblin AL, Amiaud J, Renaud A, et al. Oncostatin M, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol. 2015;185:765–75.

    Article  CAS  PubMed  Google Scholar 

  17. Torossian F, Guerton B, Anginot A, Alexander KA, Desterke C, Soave S, et al. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight. 2017;2:e96034.

    Article  PubMed Central  Google Scholar 

  18. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kaur S, Raggatt LJ, Batoon L, Hume DA, Levesque J-P, Pettit AR. Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches. Semin Cell Dev Biol. 2017;61:12–21.

    Article  CAS  PubMed  Google Scholar 

  20. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116:4815–28.

    Article  CAS  PubMed  Google Scholar 

  21. Levesque JP, Summers KM, Millard SM, Bisht K, Winkler IG, Pettit AR. Role of macrophages and phagocytes in orchestrating normal and pathological haematopoietic niches. Exp Hematol. 2021;100:12–31.

    Article  CAS  PubMed  Google Scholar 

  22. Modur V, Feldhaus MJ, Weyrich AS, Jicha DL, Prescott SM, Zimmerman GA, et al. Oncostatin M is a proinflammatory mediator. In vivo effects correlate with endothelial cell expression of inflammatory cytokines and adhesion molecules. J Clin Invest. 1997;100:158–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levesque JP, Helwani FM, Winkler IG. The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia. 2010;24:1979–92.

    Article  PubMed  Google Scholar 

  24. Tay J, Levesque J-P, Winkler IG. Cellular players of hematopoietic stem cell mobilization in the bone marrow niche. Int J Hematol. 2017;105:129–40.

    Article  CAS  PubMed  Google Scholar 

  25. Bendall L. Extracellular molecules in hematopoietic stem cell mobilisation. Int J Hematol. 2017;105:118–28.

    Article  CAS  PubMed  Google Scholar 

  26. Pelus LM, Broxmeyer HE. Peripheral blood stem cell mobilization: a look ahead. Curr Stem Cell Rep. 2018;4:273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levesque JP, Winkler IG. Mobilization of hematopoietic stem cells: state of the art. Curr Opin Organ Transpl. 2008;13:53–8.

    Article  Google Scholar 

  28. To LB, Levesque J-P, Herbert KE. How I treat patients who mobilize hematopoietic stem cells poorly. Blood. 2011;118:4530–40.

    Article  CAS  PubMed  Google Scholar 

  29. Seita J, Sahoo D, Rossi DJ, Bhattacharya D, Serwold T, Inlay MA, et al. Gene expression commons: An open platform for absolute gene expression profiling. PLoS ONE. 2012;7:e40321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi J, Baldwin TM, Wong M, Bolden JE, Fairfax KA, Lucas EC, et al. Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans. Nucleic Acids Res. 2018;47:D780–D5.

    Article  PubMed Central  Google Scholar 

  31. Levesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol. 2002;30:440–9.

    Article  CAS  PubMed  Google Scholar 

  32. Pelus LM, Bian H, King AG, Fukuda S. Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT /CXCL2Δ4. Blood. 2004;103:110–9.

    Article  CAS  PubMed  Google Scholar 

  33. Brolund L, Küster A, Korr S, Vogt M, Müller-Newen G. A receptor fusion protein for the inhibition of murine oncostatin M. BMC Biotechnol. 2011;11:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B, Buonocore S, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med. 2017;23:579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reca R, Cramer D, Yan J, Laughlin MJ, Janowska-Wieczorek A, Ratajczak J, et al. A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins. Stem Cells. 2007;25:3093–100.

    Article  CAS  PubMed  Google Scholar 

  36. Nowlan B, Futrega K, Brunck ME, Walkinshaw G, Flippin LE, Doran MR, et al. HIF-1α-stabilizing agent FG-4497 rescues human CD34+ cell mobilization in response to G-CSF in immunodeficient mice. Exp Hematol. 2017;52:50–5.

    Article  CAS  PubMed  Google Scholar 

  37. Nowlan B, Williams ED, Doran MR, Levesque J-P. CD27, CD201, FLT3, CD48, and CD150 cell surface staining identifies long-term mouse hematopoietic stem cells in immunodeficient non-obese diabetic severe combined immune deficient-derived strains. Haematologica. 2020;105:71–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E, Cuesta-Domínguez Á, et al. The bone marrow microenvironment at single-cell resolution. Nature. 2019;569:222–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med. 2005;201:1307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Foudi A, Jarrier P, Zhang Y, Wittner M, Geay JF, Lecluse Y, et al. Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4−/− chimeric mice. Blood. 2006;107:2243–51.

    Article  CAS  PubMed  Google Scholar 

  41. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest. 2003;111:187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3:687–94.

    Article  CAS  PubMed  Google Scholar 

  43. Winkler IG, Barbier V, Wadley R, Zannettino ACW, Williams S, Levesque J-P. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood. 2010;116:375–85.

    Article  CAS  PubMed  Google Scholar 

  44. Pietras EM, Reynaud D, Kang Y-A, Carlin D, Calero-Nieto Fernando J, Leavitt, et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell. 2015;17:35–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barbier V, Nowlan B, Levesque JP, Winkler IG. Flow cytometry analysis of cell cycling and proliferation in mouse hematopoietic stem and progenitor cells. Methods Mol Biol. 2012;844:31–43.

    Article  CAS  PubMed  Google Scholar 

  46. Sato F, Miyaoka Y, Miyajima A, Tanaka M. Oncostatin M maintains the hematopoietic microenvironment in the bone marrow by modulating adipogenesis and osteogenesis. PLoS ONE. 2014;9:e116209.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Elbjeirami WM, Donnachie EM, Burns AR, Smith CW. Endothelium-derived GM-CSF influences expression of oncostatin M. Am J Physiol Cell Physiol. 2011;301:C947–C53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Zheng Z, Huang B, Wu H, Zhang X, Chen Y, et al. Osteal tissue macrophages are involved in endplate osteosclerosis through the OSM-STAT3/YAP1 signaling axis in modic changes. J Immunol. 2020;205:968–80.

    Article  CAS  PubMed  Google Scholar 

  49. Broxmeyer HE, Bruns HA, Zhang S, Cooper S, Hangoc G, McKenzie ANJ, et al. Th1 cells regulate hematopoietic progenitor cell homeostasis by production of oncostatin M. Immunity. 2002;16:815–25.

    Article  CAS  PubMed  Google Scholar 

  50. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood. 2001;98:1289–97.

    Article  CAS  PubMed  Google Scholar 

  51. Albiero M, Poncina N, Ciciliot S, Cappellari R, Menegazzo L, Ferraro F, et al. Bone marrow macrophages contribute to diabetic stem cell mobilopathy by producing oncostatin M. Diabetes. 2015;64:2957–68.

    Article  CAS  PubMed  Google Scholar 

  52. Albiero M, Ciciliot S, Tedesco S, Menegazzo L, D’Anna M, Scattolini V, et al. Diabetes-associated myelopoiesis drives stem cell mobilopathy through an OSM-p66Shc signaling pathway. Diabetes. 2019;68:1303–14.

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka M, Hara T, Copeland NG, Gilbert DJ, Jenkins NA, Miyajima A. Reconstitution of the functional mouse oncostatin M (OSM) receptor: molecular cloning of the mouse OSM receptor β subunit. Blood. 1999;93:804–15.

    Article  CAS  PubMed  Google Scholar 

  54. Winkler IG, Barbier V, Perkins AC, Magnani JL, Levesque J-P. Mobilisation of reconstituting HSC is boosted by synergy between G-CSF and E-selectin antagonist GMI-1271. Blood. 2014;124:317. (abstract)

    Article  Google Scholar 

  55. Zheng J, Lu Z, Kocabas F, Böttcher RT, Costell M, Kang X, et al. Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow. Blood. 2014;123:992–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sugimoto M, Nakamura T, Ohtani N, Hampson L, Hampson IN, Shimamoto A, et al. Regulation of CDK4 activity by a novel CDK4-binding protein, p34SEI-1. Genes Dev. 1999;13:3027–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, et al. A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012;18:1350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takihara Y, Nakamura-Ishizu A, Tan DQ, Fukuda M, Matsumura T, Endoh M, et al. High mitochondrial mass is associated with reconstitution capacity and quiescence of hematopoietic stem cells. Blood Adv. 2019;3:2323–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Filippi M-D. HSC divisional memory: the journey of mitochondrial metabolism through HSC division. Exp Hematol. 2021;96:27–34.

    Article  CAS  PubMed  Google Scholar 

  60. Weiss MJ, Orkin SH. Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci USA. 1995;92:9623–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Perkins AC, Sharpe AH, Orkin SH. Lethal β-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature. 1995;375:318–22.

    Article  CAS  PubMed  Google Scholar 

  62. Vyas P, Ault K, Jackson CW, Orkin SH, Shivdasani RA. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood. 1999;93:2867–75.

    Article  CAS  PubMed  Google Scholar 

  63. Essers MAG, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature. 2009;458:904–8.

    Article  CAS  PubMed  Google Scholar 

  64. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature. 2010;465:793–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk LV, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schwaller J, Parganas E, Wang D, Cain D, Aster JC, Williams IR, et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell. 2000;6:693–704.

    Article  CAS  PubMed  Google Scholar 

  67. Müller TA, Grundler R, Istvanffy R, Rudelius M, Hennighausen L, Illert AL, et al. Lineage-specific STAT5 target gene activation in hematopoietic progenitor cells predicts the FLT3+-mediated leukemic phenotype. Leukemia. 2016;30:1725–33.

    Article  PubMed  Google Scholar 

  68. Grundler R, Miething C, Thiede C, Peschel C, Duyster J. FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood. 2005;105:4792–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by project grant 1144062 from the National Health and Medical Research Council of Australia (NHMRC) (JPL, IGW) and by donations from the Mater Foundation. IGW and JPL are supported by Research Fellowships 1108352 and 1136130 respectively from the NHMRC. We thank Translational Research Institute flow cytometry core facility and biological resources facility for flow cytometry and animal experiments, the University of Queensland Protein Expression Facility for OSM-trap production, Angelika Christ from the University of Queensland Institute of Molecular Biosciences Sequencing Facility, Galaxy Australia for RNA sequencing, Adam Ewing for his advice in analyzing RNA sequencing data, and Igor Makunin from Queensland Facility for Advanced Bioinformatics-UQ for bioinformatics.

Author information

Authors and Affiliations

Authors

Contributions

KB coordinated the work, planned and performed the experiments, analyzed the data, interpreted results, wrote and edited the manuscript. CMG performed animal experiments, flow cytometry assays and analyzed data. SYL performed and analyzed human OSM ELISA experiments. HST analyzed RNA sequencing data. KAA assisted with IHC experiments. TM and WF and assisted with animal experiments, western blot and RT-qPCR assays. HB organized experiments on human samples and edited the manuscript. NAS, GMN, HB and IGW provided essential reagents and advice and edited the manuscript. JPL conceived the work, attracted competitive funding, helped with experimental design and analyses, interpreted the results, wrote and edited the manuscript.

Corresponding author

Correspondence to Jean-Pierre Lévesque.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisht, K., McGirr, C., Lee, SY. et al. Oncostatin M regulates hematopoietic stem cell (HSC) niches in the bone marrow to restrict HSC mobilization. Leukemia 36, 333–347 (2022). https://doi.org/10.1038/s41375-021-01413-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01413-z

This article is cited by

Search

Quick links