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TO THE EDITOR:
Cancers derived from the malignant transformation of gamma–delta
(γδ) T cells carry very poor prognosis. The major pathologies
recognised are γδ T acute lymphoblastic leukaemia (γδ T-ALL), and
two lymphoma subtypes: hepatosplenic T cell lymphoma (HSTL) and
primary cutaneous γδ T cell lymphoma (PCγδ-TCL) [1]. γδ T-ALL
represents approximately 10% of cases of T-ALL and is associated
with high rates of induction failure, relapse and excess mortality [2].
HSTL is a rare (approximately 3% of cases of T cell lymphoma [1]) but
highly aggressive disorder, which typically presents in males in the
2nd or 3rd decade of life, often in association with immunosuppres-
sive therapy [3]. It carries the worst prognosis of all lymphoma
subtypes, with a median survival of only 6–8 months [4] and only
isolated cases of long-term survival [5]. PCγδ-TCL is also rare
(approximately 1% of skin lymphomas [1]) and presents with
cutaneous involvement, typically associated with visceral and/or
bone marrow disease. Again, outcomes are poor, with 75% 1-year
mortality in the largest published case series [6].
Treatment for γδ malignancies is with cytotoxic chemotherapy,

with no tumour-specific therapies currently available. By contrast,
in analogous B-cell malignancies, highly effective immunothera-
pies, including monoclonal antibodies, bispecific T cell engagers
and chimeric antigen receptor (CAR)-T cells [7] are available.
These therapies have revolutionised the treatment and outcome
of advanced B-cell malignancies. CAR-T cells against CD19
in particular have demonstrated the potential to induce long-
lasting complete remissions even in patients with advanced and
refractory cancers [7].
For γδ malignancies, the defining immunophenotypic charac-

teristic is expression of the γδ T cell receptor (TCR), present in
>95% of cases of HSTL and in all PCγδ-TCL and γδ T-ALL [3].
Importantly, in normal tissues expression is limited to γδ T cells,
where it functions as the antigen recognition receptor. Here, we
developed CAR-T cells targeting the γδ TCR and demonstrate
in vitro and in vivo efficacy against γδ T cell malignancies. Our
data offers proof-of-concept for γδ TCR-targeting with CAR-T cells
as a potential approach to bring highly potent immunotherapy to
the treatment of γδ malignancies.
Primary αβ T cells were retrovirally transduced to express

anti-γδ TCR CAR or control anti-CD19 CAR (Fig. 1a). Following

transduction with anti-CD19 CAR, a small proportion of γδ T cells
persisted in the culture, including some which expressed anti-
CD19 CAR. By contrast, for anti-γδ TCR CAR, no γδ T cells were
detected in the culture, suggesting ‘purging’ of these cells by the
transduced population (Fig. 1b). CAR-T cells were then co-cultured
with T cell lines which natively express (Loucy – Vγ9Vδ2, BE13 –
Vγ8Vδ1, MOLT13 – Vγ3Vδ1 [8]) or are negative for surface γδ TCR
(SupT1-CD19). While control anti-CD19 CAR lysed only SupT1-
CD19 cells, anti-γδ TCR CAR-T lysed only γδ TCR-positive cell lines
(Fig. 1c). In addition, anti-γδ TCR CAR-T cells demonstrated specific
secretion of cytokines including interferon-γ, IL-2, IL-13 and TNF-α
(Fig. 1d). Next, we co-cultured anti-CD19 or anti-γδ CAR-T cells
with normal autologous γδ T cells. At a high E:T ratio (1:1), target
normal γδ T cells were partially lysed (Fig. 1e), with concomitant
expansion of anti-γδ CAR-T cells (Fig. 1f). A marked down-
regulation of γδ TCR expression was noted on surviving γδ T cells
(Fig. 1g). Interestingly, by contrast, at lower E:T ratios (1:2 and 1:4),
paradoxical γδ T cell expansion was instead observed (Fig. 1e),
associated with reduction in numbers of anti-γδ CAR-T cells
(Fig. 1f). This suggests lysis of anti-γδ CAR-T by target normal γδ
T cells.
To assay the in vivo potency of anti-γδ TCR CAR-T cells, we utilised

the Loucy murine model of disseminated γδ TCR-positive leukaemia
(Fig. 2a, d). NSG mice were intravenously injected on CAR D-12 with
4 × 106 Loucy cells, engineered to stably express Firefly luciferase.
Tumour engraftment was confirmed by bioluminescence imaging
(BLI) at D-1 (data not shown), then mice were treated on D0 with 8 ×
105 anti-γδ TCR or control anti-CD19 CAR-T cells. Mice receiving anti-
γδ TCR CAR demonstrated reduction of tumour burden, as assessed
by flow cytometry of bone marrow and spleen at necropsy on D14
(Fig. 2b, c, Supplementary Fig. 1), BLI (Fig. 2e, f) and bleed at D30
(Fig. 2g). Prolonged survival (Fig. 2h) was seen in anti-γδ TCR CAR
recipients compared to CD19 CAR-treated animals, although all
animals eventually died of progressive γδ TCR-positive disease, with
no evidence of antigen downregulation. In common with other NSG
models, CAR-T cell persistence was limited, with no detectable cells in
the peripheral blood at D30 (data not shown).
Despite success in B-cell malignancies, a lack of acceptable

targets means targeted immunotherapy is rarely applied to
T cell malignancies. The anti-CD30 antibody-drug conjugate
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Fig. 1 In vitro testing of anti-γδ TCR CAR. a Schematic of anti-γδ TCR CAR, with 2nd generation architecture. b Example flow plot of γδ-TCR
staining on anti-CD19 or anti-γδ TCR CAR-T cells following transduction c co-cultures of anti-γδ TCR or control anti-CD19 CAR-T cells with
CD19+ (SupT1-CD19) or γδ TCR+ cell lines (Loucy, MOLT13, BE13) (c) cytotoxicity at 72 h, as measured by bioluminescence-based assay (d) cytokine
secretion at 48 h. e–g 120-h co-culture of control or anti-γδ TCR CAR-T cells with autologous normal γδ T cells, n= 3. e Residual γδ T cells as
proportion of starting cells f Example γδ TCR staining on normal γδ T cells after co-culture with anti-γδ TCR CAR-T or anti-CD19 CAR-T cells g residual
anti-γδ TCR CAR-T or anti-CD19 CAR-T following co-culture, as proportion of starting cells. **p < 0.001, ***p< 0.0001.

Fig. 2 In vivo assessment of anti-γδ TCR CAR. a Schematic of Loucy murine model (n= 6/group) b Quantification of tumour in (b) marrow
and (c) spleen at D14 following CAR-T injection. d Schematic of Loucy murine model (n= 9/group) e bioluminescence (BLI) imaging at D21
following CAR-T infusion. f Quantification of BLI signal at D21 g quantification of tumour burden in blood at D30 h survival curves of mice
(median survival CAR19 50 days v CARγδ 69 days, HR 12.4, p= 0.0003, comparison by log-rank method). All other comparisons by
Mann–Whitney U test.
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brentuximab vedotin is effective in anaplastic large cell lymphoma
[9], however, CD30 is not typically expressed in γδ cancers [2].
Suggested approaches to targeting T cell malignancies include
targeting pan-T cell antigens such as CD5 [10] or CD7 [11].
However, such strategies deplete the entire normal T cell
compartment and may induce profound immunosuppression
[11], potentially requiring rescue by allogeneic hematopoietic
stem cell transplant.
More refined approaches that target clonal elements of the TCR,

such as selective targeting of TRBC1 and TRBC2 in αβ T cell
malignancies, allow depletion of only part of the normal T cell
compartment [12]. While analogous approaches are potentially
possible in γδ TCR malignancies, simple targeting of the γδ TCR
may be feasible. This approach could concomitantly deplete
normal γδ T cells. These constitute <5% of peripheral blood T cells,
are more abundant in tissues and have a range of proposed
ancillary immunological functions [13]. Importantly, genetically
γδ-deficient mice display a very mild phenotype [14], and there is
no known human pathology associated with γδ T cell deficiency.
This suggests that depletion of the γδ T cell compartment may
be clinically tolerable, although initially clinical exploration of
anti-γδ TCR CAR-T should proceed cautiously: for instance with
co-expression of a suicide gene [15], availability of back-up
cryopreserved peripheral blood mononuclear cells, and close
monitoring for development of atypical infections.
Indeed, it is unclear if anti-γδ CAR-T treatment would lead to γδ

T cell aplasia. An interesting observation in our study was that, while
anti-γδ CAR-T expanded when cultured with normal γδ T cells at high
E:T ratio, the reverse was observed when normal γδ T was in excess.
Thus, anti-γδ CAR-T were themselves depleted from the culture, with
expansion of normal γδ T cells. The probable explanation is that CAR
binding to the TCR of γδ T cells induced CAR signalling, but also
signalling via the TCR of the γδ T cell, leading to a 2-way synapse with
each cell potentially both target and effector. When normal γδ T
outnumbered anti-γδ CAR-T, the balance of cytotoxicity resulted in
anti-γδ CAR-T cell lysis and expansion of the normal cells. The
potential clinical consequences for anti-γδ TCR CAR therapy are
unclear and would be difficult to ascertain pre-clinically due to a lack
of relevant immunocompetent models. However, in patients receiving
anti-γδ CAR-T, it is likely that the CAR-T: normal γδ T cell ratio at the
tumour site would be high in the critical initial CAR-T expansion
phase, following lymphodepleting chemotherapy.
Here, we have demonstrated the feasibility of engineering

normal αβ T cells to express anti-γδ TCR CAR and have shown that
anti-γδ TCR CAR-T cells can specifically kill malignant γδ cells both
in vitro and in vivo. Our approach offers the first proposed
strategy to bring highly potent CAR-T cells to the treatment of
γδ T cell malignancies, where there is a major unmet need
for effective therapies. Clinical assessment of this approach is
warranted.
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