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CHRONIC LYMPHOCYTIC LEUKEMIA

Longitudinal analyses of CLL in mice identify leukemia-related
clonal changes including a Myc gain predicting poor outcome
in patients
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Chronic lymphocytic leukemia (CLL) is a B-cell malignancy mainly occurring at an advanced age with no single major genetic driver.
Transgenic expression of TCL1 in B cells leads after a long latency to a CLL-like disease in aged Eµ-TCL1 mice suggesting that TCL1
overexpression is not sufficient for full leukemic transformation. In search for secondary genetic events and to elucidate the clonal
evolution of CLL, we performed whole exome and B-cell receptor sequencing of longitudinal leukemia samples of Eµ-TCL1mice. We
observed a B-cell receptor stereotypy, as described in patients, confirming that CLL is an antigen-driven disease. Deep sequencing
showed that leukemia in Eµ-TCL1 mice is mostly monoclonal. Rare oligoclonality was associated with inability of tumors to develop
disease upon adoptive transfer in mice. In addition, we identified clonal changes and a sequential acquisition of mutations with
known relevance in CLL, which highlights the genetic similarities and therefore, suitability of the Eµ-TCL1 mouse model for
progressive CLL. Among them, a recurrent gain of chromosome 15, where Myc is located, was identified in almost all tumors in Eµ-
TCL1 mice. Interestingly, amplification of 8q24, the chromosomal region containing MYC in humans, was associated with worse
outcome of patients with CLL.
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INTRODUCTION
Cellular heterogeneity and clonal evolution of tumors are of major
interest in the era of targeted therapies, as these likely impact
differently on specific cancer clones. During treatment, some
tumor clones get reduced, but inadvertently drugs also provide
potent selective pressure for expansion of other clones, a major
cause of therapy resistance [1]. Chronic lymphocytic leukemia
(CLL) is a malignancy of mature B cells in which genetic driver
lesions and their relationship to clonal evolution have been
identified [2], and an association of clonal evolution with
treatment relapse and drug resistance has been described [3].
Eµ-TCL1 mice are the most accepted and widely used mouse

model of CLL for studying disease biology and for preclinical drug
testing. This mouse model line was established by exogenous
expression of the human TCL1 gene under the control of the
immunoglobulin heavy chain variable region (IGHV) promoter and
IGH (Eµ) enhancer [4]. Starting from 6 months of age, these mice
develop a CLL-like disease characterized by an accumulation of

CD5+ B cells in blood and lymphoid organs, affecting almost 100%
of the animals. Usually only at an age of more than 12 months,
mirroring the median age of 70 for CLL diagnosis in humans [5],
these mice develop end-stage disease with splenomegaly and
very high leukemic cell counts in blood. The expanded leukemic
cells exhibit clonal immunoglobulin rearrangements and B-cell
receptor (BCR) sequences without IGHV hypermutations, but
stereotyped heavy-chain complementarity-determining region 3
(HCDR3) regions as similarly observed in about 30% of patients
with CLL [6]. Although the TCL1 gene is variably expressed in CLL
patients, higher expression is associated with unmutated IGHV
status, a characteristic that correlates with more aggressive
disease and shorter lymphocyte doubling time [7, 8]. Accordingly,
the Eµ-TCL1 mouse model is widely accepted as a model of
aggressive CLL and has been extensively used to study the role of
mouse orthologs of various genetic players in CLL such as BTK,
PRKCB, and TP53 [6, 9–11]. The long latency of leukemia
development in this model suggests that TCL1 overexpression
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acts as a predisposing factor or initial hit for premalignant
transformation, yet other genetic or microenvironmental aberra-
tions appear to be required for full leukemic transformation [12].
Consequently, this raises the possibility that the gain of genomic
aberrations plays an active role in disease development in these
mice. However, this has not been investigated intensively so far.
In this study, we aimed to identify the genomic aberrations,

which might contribute to the leukemia development in the Eµ-
TCL1 mouse model, as well as study the clonal evolution using
serial transplantation of TCL1 leukemia. To achieve this, we
performed whole exome sequencing (WES) as well as targeted
sequencing of the complementarity-determining region 3 of the
BCR locus of malignant B cells isolated from leukemic Eµ-TCL1
mice and from animals after serial transplantation of leukemia
cells in syngeneic wild-type (WT) mice. We observed that about
half of the tumors were monoclonal, and oligoclonal tumors
consisted of one major BCR clone. In addition, an increased
mutational load, partly accompanied by BCR changes was
observed upon transplantation of tumors. Most strikingly, all
tumors but one showed a gain in chromosome 15, and therefore
Myc, which we propose to be the main second hit for tumor
formation in this mouse model.

RESULTS
To characterize the genetic complexity and evolution of malignant
B cells in the Eµ-TCL1 mouse model of CLL, we performed WES of
purified splenic B cells and germline controls of eight Eµ-TCL1
mice manifesting CLL-like symptoms (primary tumor), as well as
four mice, which were serially transplanted with malignant B cells
of four different primary tumors (Fig. 1a). Average sequencing
coverage at targeted regions for eight tumor samples (primary vs.
transplanted) from our cohort was ~180×, except for the four
lowly sequenced primary samples in which the average coverage
was 80× (Table S1). We further included a recently published
dataset (SRP150049) of WES of TCL1 tumors [13] in the analysis.
The workflow utilized for this analysis is outlined in Fig. S1. We
detected a mutation load in the range of 0.1–2.0 per Mb, which is
in line with the low mutation rate detected in CLL patients, which
is typically around 0.8 per Mb [14].
In both cohorts, serial transplantation of tumors resulted in an

increase in mutational load (somatic nucleotide variants (SNVs)
and small Indels/Mb in coding regions; Fig. S2). This observation
was independent of the sequencing depth at the targeted regions
(Fig. 1b). Variant allele frequency distributions of mutations in all
primary and transplanted tumors of our study showed that most
mutations have a low-allele frequency (5–10%; Fig. 1c, upper
panel), which may imply existence of several clones and subclones
that might evolve when subjected to selection pressure after
transplantation. Although the total number of mutations are lower
in the SRP150049 dataset, interestingly, allele frequencies were
mostly higher than in samples of our study (Fig. 1c, lower panel).
Although penetrance of leukemia development in Eµ-TCL1 mice is
near 100%, the course of disease is quite heterogeneous.
Therefore, adoptive transfer (AT) of malignant B cells in syngeneic
WT mice is frequently used to create cohorts of mice with a more
homogenous disease course, which is especially important for
preclinical drug testing. Even though most tumors engraft in mice
when the genetic background of the recipient and the donor
matches, still some tumors are rejected upon transplantation [15].
Furthermore, transfer of one primary TCL1 tumor in several age-
and sex-matched recipient mice results frequently in individual
differences in tumor development, making analysis of treatment
effects challenging in this model (unpublished observations and
Table S2). We monitored disease development after transplanta-
tion of 14 different primary TCL1 tumors into 4–14 recipient mice
each by regular blood collection and analyses (Table S2). As we
observed different degrees of heterogeneity in engraftment and

leukemia development in the transplanted mice, we analyzed the
BCR sequences of these tumors by RACE-PCR to elucidate their
clonal composition in depth (Tables 1 and S3). Tumors with
several subclones at a considerable percentage showed a
heterogeneous engraftment pattern (e.g., Eµ-TCL1 647) or did
not engraft at all (e.g., Eµ-TCL1 684) (Tables 1 and S2). Interestingly,
some aggressive tumors growing in a very short time became
monoclonal in the recipient mice by loss of previously existing
minor subclones (e.g., Eµ-TCL1 1000; Tables 2 and S2).
In addition, BCR sequences from WES data of mouse tumors

were used as input for MiXCR analyses for identifying tumor-
specific V(D)J clonotypes. Six samples analyzed by both RACE-PCR
and WES and resulting in the same V(D)J sequences, demon-
strated that WES data can be also used to reliably predict V(D)J
clonotypes (Table S3). However, as the read counts for the BCR
genomic locus were low in WES, quantification was more reliable
by RACE-PCR. Eight out of 22 sequenced primary tumors had
monoclonal BCRs (≥99.5%). Seven had a dominant clone
comprising more than 95% of the tumor. Only 4 out of 22 tumors
comprised of several clones with a prevalence of more than 10%
of the tumor. We detected stereotyped BCRs, which use the
variable genes Ighv1-55, Ighv11-2, and Ighv12-3 as the most
frequent clonotypes of the malignant B cells (Table 1), which is in
line with previous reports [6, 16]. Analysis of the BCR sequences of
sequential tumor samples showed that the main BCR clone is
conserved upon AT of tumors (Fig. 2 and Tables 2, S3), except for
1 sample, where a clone with the same V and J chain, but with a
new D chain emerged in one of the three recipients of the
transplant (Fig. 2, TCL1 595). No reads were detected for the
emerging new clone in the primary tumor (Table S3).
Next, we investigated the clonal evolution dynamics of these

serially transplanted tumors with respect to somatic mutations as
well as their BCR sequences. To identify evolving SNV clones, we
used an approach to track dynamics of SNV clusters, i.e., groups of
SNVs having similar cancer cell fractions at a time point rather
than tracking clonal changes only by certain driver genes. For this,
filtered SNVs (Table S4: in-house samples and Table S5:
SRP150049 samples), their allele frequencies and copy number
states as estimated using CNVkit, were used as input for PyClone
that evaluated clusters of putative somatic clones and changes in
the fractions of their cellular prevalence as the disease progressed
in primary to transplanted tumors (Table S6) [17, 18]. Also,
changes in proportions of BCR clonotypes from primary to
transplanted tumors were noted. On tracking the dynamics of
BCR clonotypes and changes in cellular prevalence of somatic
mutations, several patterns of clonal evolution were evident. In
the first pattern shown in Fig. 3a, tumors exhibited a change in the
proportion of BCR clonotypes in the primary tumor vs. the
transplanted tumor, and associated with that are changes in
prevalence of SNV-defined subclones upon tumor transplantation.
This pattern is indicative of an expanding new major clone that
could be driven by acquired novel somatic SNVs in the
transplanted tumors. In the second pattern, tumors showed stable
clonotype proportions with B cells harboring one major BCR, and
relatively stable SNV-defined subclones, indicative of a clonally
stable disease before and after tumor transplantation without
novel somatic SNVs arising (Fig. 3b). Interestingly, as a third
pattern, one of the analyzed tumor pairs showed a stable BCR
clonotype but major changes in SNV-defined subclones, indicative
of a mutating tumor clone (Fig. 3c). Mutations associated with
each of these patterns are marked in Tables S4 and S5. Overall,
these results indicate that different clonal evolution patterns are
observed in different tumors of Eµ-TCL1 mice, which might
depend on the varying proliferative capacities of the malignant
cells and the presence of specific mutations providing advantages
to some clones compared to others.
Furthermore, we examined mutations leading to amino acid

changes that are predicted to affect protein function using SIFT
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Fig. 1 Exonic mutations in tumors of Eµ-TCL1 mice. a Scheme showing the transplantation of tumors isolated from spleens of primary Eµ-
TCL1 mice (P) to serially transplanted mice (T1, T2 etc). b Total exonic mutations as well as average sequencing depth at the targeted region is
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analysis [19]. Using the criteria of an allele frequency of at least
10% and having a read coverage of the alternative allele of at least
5 and considering only the mutations changing across serial
transplantations, we have detected deleterious mutations in the
following 15 genes: Speg, Ush2a, Obscn, Kcnk16, Pdia2, Grk2, Spi1,
Ptpn3, Sema3a, Raf1, Smg1, Arhgef7, Ikbkb, AW551984, and Tbx18
(Table S4). Most of these mutations were detected only in the
serially transplanted tumors, except for Tbx18, for which the allelic
fraction of the mutation is 6.9% in the primary tumor and
increases to 50.9% in the serially transplanted tumor. As Tbx18 has
been shown to have a role in proliferation and tumorigenesis, this
mutation is likely to provide a growth advantage for the
transplanted tumor [20]. Interestingly, we have observed a
deleterious mutation for Ush2a in three out of four serially
transplanted tumors. As Ush2a mutations have been shown to
play a role in several leukemias and lymphomas, it is possible that
this deleterious mutation contributes to the more aggressive
phenotype of the transplanted tumors [21–23].
We next investigated whether the detected mutations have

pathogenic relevance in humans. We identified a total of 509
mutated genes across all our samples that were previously
reported as being pathogenic in the COSMIC database v90
(Table S4), and there is a significant overlap with human
pathogenic CLL genes in COSMIC (p < 1−5, Chi square test).
Furthermore, we mapped the identified SNVs to the human CLL
gene list (n= 309) from the DISEASE database (Fig. 4). Out of 17
genes that mapped to the DISEASE database, 7 have been linked

to pathogenesis of human CLL and/or other leukemias (Birc3,
Wnt5a, SP140, Atr, Lyn, CD274, and Flt3), and SIFT analysis revealed
that the detected mutation in Lyn is likely deleterious (Table S4).
These results suggest that disease development in the Eµ-TCL1
mouse model is driven by similar pathways as CLL in patients. For
example, BIRC3 mutations (mostly nonsense and frameshift
variants) were identified in fludarabine-refractory CLL patients,
and were also used to define a high-risk CLL group [24]. Several
kinds of dysregulation of the Wnt signaling pathway have been
reported in leukemias [25]. Further, FLT3 mutations were found in
one-third of newly diagnosed acute myeloid leukemia patients,
and FLT3 internal tandem duplication was associated with relapse
and inferior survival [26]. SP140 was one of the mutations
identified in hyperdiploid multiple myeloma samples [27].
However, none of these mutations were recurring across our
analyzed samples, and therefore attributed to clonal
heterogeneity.
By analyzing the copy number variations in the tumor samples

analyzed by WES (Table S7), we observed a deletion in
chromosome 12 in almost all samples (Figs. 5a and S3), which is
located within the immunoglobulin variable region, and therefore
is expected to occur during VDJ recombination in B cells.
Interestingly, in 13 out of 15 (87%) primary tumor samples (7/8
of our samples and 6/7 of SRP150049), a gain of chromosome 15
(chr15) was identified (Figs. 5a and S3). We further detected the
same pattern of chr15 gain in the respective transplanted tumors
(Fig. S3). We excluded that this was due to a chromosomal

Table 1. Ighv gene composition of 22 primary Eµ-TCL1 tumors as revealed by targeted sequencing followed by RACE-PCR.

ID Clone_no % Ighv
741 1 100.0 Ighv1-26 
661 1 100.0 Ighv1-74 
695 1 100.0 Ighv1-55
636 1 100.0 Ighv11-2 
813 1 100.0 Ighv1-55
683 1 99.8 Ighv11-2 
902 1 99.8 Ighv12-3 

7498 1 99.5 Ighv11-2 
774 1 98.7 Ighv11-2 

2 1.2 Ighv1-55
850 1 98.1 Ighv1-55

2 1.7 Ighv1-74 
648 1 98.0 Ighv1-55

2 1.2 Ighv4-1 
6029 1 97.7 Ighv1-55

2 2.0 Ighv2-9-1
756 1 97.6 Ighv12-3 

2 1.8 Ighv11-2 
739 1 96.8 Ighv1-55

2 3.0 Ighv11-2 

ID Clone_no % Ighv
723 1 96.6 Ighv12-3 

2 3.0 Ighv11-2 
595 1 94.5 Ighv12-3 

2 4.9 Ighv1-58 
1000 1 92.4 Ighv12-3 

2 7.1 Ighv5-9-1 
729 1 87.3 Ighv1-55

2 6.9 Ighv2-3 
3 5.0 Ighv1-64 

647 1 87.3 Ighv1-64 
2 12.7 Ighv12-3 

684 1 74.4 Ighv1-39 
2 14.4 Ighv5-16 
3 7.1 Ighv1-11 
4 2.3 Ighv9-3 
5 0.8 Ighv11-2 

506 1 68.2 Ighv4-1 
2 31.8 Ighv12-3 

909 1 51.4 Ighv11-2 
2 27.5 Ighv12-3 
3 20.3 Ighv5-17 

Recurrent variable genes are colored.
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abnormality of the mouse line, as the germline samples did not
show this gain. Interestingly, Myc oncogene is located on chr15
within the gained region in mice. To confirm the gain of Myc in
malignant cells of Eµ-TCL1 mice, we performed interphase FISH
analysis of splenocytes from 14 leukemic Eµ-TCL1 mice with
primary disease, 3 non-leukemic, 5-week-old Eµ-TCL1 mice, as well
as 5 WT littermate mice from the Eµ-TCL1 breeding (Fig. 5b and
Table S8). In addition to a Myc-specific FISH probe, we used a
chromosome 16 probe to exclude polyploidy of the tumor cells.
Minor tetraploidy was detected in 10/17 TCL1 samples (0.51% in
9 samples and 6.7% in 1 sample) and those cells were excluded
from the analysis. Twelve out of 14 primary tumor samples
showed trisomy of Myc in almost all tumor cells (Fig. 5b; exception
#684 and #648 with <10% of cells with Myc gain). Interestingly,
both mice with early or late stage (reflected by the tumor load) of
the primary disease showed Myc gain (Fig. 5b and Table S8),
suggesting that Myc gain is an early event in malignant
transformation in this model. In 11 of these tumor samples,
tetrasomy of the Myc locus was also detected, although at a much
lower frequency (0.5–5% of analyzed cells) (Table S8). We have not
detected more than four copies of Myc in any of the samples. By
analyzing healthy WT and non-leukemic Eµ-TCL1 mice, a very low
frequency of trisomy 15 was detected in one out of three non-
leukemic Eµ-TCL1 samples (3% of cells) as well as two out of five
WT samples (3% of cells) (Table S8). Remarkably, one tumor
sample (#684) that showed Myc gain only in 4% of the cells
(Fig. 5b) did not engraft in any of the transplanted mice (0 out of
10 mice; Table S2), suggesting that gain of Myc is necessary for
tumor cell engraftment. Further, another tumor sample (#648)
with a very low percentage of Myc gain (Fig. 5b) engrafted only in
two out of four transplanted mice (Table S2), and in the engrafted

tumors (#648 T1.1 and #648 T1.2), trisomy of Myc, however, was
detected in all CLL cells (Fig. 5b; Table S8).
In order to test if the gain of the Myc locus also leads to

enhanced expression of c-MYC protein, we performed intracellular
flow cytometry. Normal B cells from WT mice did not express any
detectable levels of c-MYC (Fig. 5c). On the other hand, CLL cells
from Eµ-TCL1 mice showed varying levels of c-MYC expression,
with some mice expressing it at a similar level as B cells from Eµ-
Myc mice (Fig. 5c), which harbor a B-cell-specific transgenic
expression of Myc via the IGVH promoter and Eµ enhancer and
develop a very aggressive lymphoma [28, 29]. To compare the
c-MYC expression in normal B cells and CLL cells from the same
mice, we used three mice adoptively transferred with Eµ-TCL1
cells, where the normal B cells originate from the recipient WT
mice. In these mice, we observed that c-MYC expression was
specific to CLL cells and almost undetectable in normal B cells
(Fig. 5d).
Dysregulation of MYC is essential in the pathogenesis of a

number of B-cell lymphomas [30]. Besides diffuse large B-cell
lymphoma and Burkitt lymphoma, MYC expression has been
linked to Richter’s syndrome, which is the transformation of CLL
into a more aggressive B-cell lymphoma. In a cohort of 134 CLL
patients, an amplification of chromosome 8q24, encompassing
the MYC locus in humans, was detected in six samples. Although
found rarely in CLL patients, this amplification caused a
disadvantage in survival as well as shortened the time to next
treatment compared to the patients without this amplification
(Fig. 6a). As almost all patients with 8q24 amplification harbored
an unmutated IGHV locus (5/6, for one patient unknown), which is
associated with shorter survival, we also compared overall survival
and time to first treatment only within the cases with unmutated

Table 2. Ighv gene composition of six primary Eµ-TCL1 tumors and their subsequent transplantations as revealed by targeted sequencing followed
by RACE-PCR.

ID Clone_no % Ighv
774 1 98.7 Ighv11-2
  2 1.2 Ighv1-55
774-2.1 1 99.8 Ighv11-2
729 1 87.3 Ighv1-55

2 6.9 Ighv2-3 
3 5.0 Ighv1-64

729-1.1 1 97.2 Ighv1-55
2 1.7 Ighv2-3 
3 1.1 Ighv12-3

729-2.1 1 58.7 Ighv12-3
2 37.0 Ighv1-55
3 4.3 Ighv2-3 

729-1.2 1 89.9 Ighv1-55
2 6.8 Ighv12-3
3 3.2 Ighv2-3 

729-1.3 1 88.5 Ighv1-55
2 10.2 Ighv2-3 

ID Clone_no % Ighv
595 1 94.5 Ighv12-3

2 4.9 Ighv1-58 
595-1.1 1 99.3 Ighv12-3
595-1.2 1 99.0 Ighv12-3
595-1.3 1 91.7 Ighv12-3

2 5.4 Ighv11-2
1000 1 92.4 Ighv12-3

2 7.1 Ighv5-9-1 
1000-1.1 1 99.8 Ighv12-3
1000-1.2 1 99.8 Ighv12-3
1000-1.3 1 99.9 Ighv12-3
741 1 100.0 Ighv1-26
741-2.1 1 100.0 Ighv1-26 
506 1 68.2 Ighv4-1 

2 31.8 Ighv12-3
506-3.1 1 71.6 Ighv4-1

2 28.4 Ighv12-3

Recurrent variable genes are colored. Primary tumors are listed first, followed by respective serially transplanted tumors (e.g., 774-2.1: tumor 774, transplanted
2 times, number 1 out of x).
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IGHV. Although 8q24 amplification did not affect survival within
this patient group, it still led to a worse outcome with respect to
time to first treatment (Fig. 6b). These results suggest MYC as an
oncogenic driver of progressive CLL also in patients.

DISCUSSION
CLL is a B-cell malignancy driven by antigenic stimulation of the
BCR, as well as genetic aberrations affecting different cellular
pathways, including RNA processing, DNA damage and cell cycle
control, chromatin modifications, Notch and Wnt signaling, and
inflammatory pathways [2]. Clonality analysis of WES data of CLL
patients allowed the identification of temporal relationships
between driver events, and a direct comparison between matched
pretreatment and relapse samples demonstrated highly frequent
clonal evolution in CLL [2]. So far, only limited data of genetic
aberrations in the Eµ-TCL1mouse model of CLL and their temporal
behavior during disease progression exist [13].
Similar to human CLL, nonoverlapping low-allele frequency

SNVs (<5%) were identified in primary and serially transplanted
tumor samples of the Eµ-TCL1 mouse model using WES. Among
them, we detected SNVs in genes that have been shown to be of
relevance in the pathogenesis of human CLL and/or other
leukemias. The most prominent one was Birc3, which belongs to
the recurrently mutated genes in CLL patients and was found to

be associated with increased risk of CLL progression [31, 32].
Another mutated gene, Wnt5a, is a member of the Wnt signaling
pathway and was previously shown to bind to ROR1 and thereby
to contribute to migration and proliferation of CLL cells [33, 34]. A
genetic polymorphism in the gene SP140 has been linked to an
increased risk to develop CLL [35], making the identified SP140
mutation of interest. Mutations in the genes CD274 (coding for PD-
L1) and Lyn are of interest, as the importance of these genes in
CLL development was shown both in patients and in the Eµ-TCL1
mouse model [36–39]. Other genes of interest are Flt3 and Atr,
which were shown to be upregulated and to have a pathological
role in CLL and other leukemias [40–43]. Future follow-up work
will be necessary to explore the relevance and underlying
mechanism of these or other mutated genes for leukemia
development in the Eµ-TCL1 mouse model, and to estimate the
usefulness of TCL1 tumors harboring these mutations as preclinical
models for CLL.
As 30% of CLL patients express quasi-identical BCRs, the so-

called “stereotyped” receptors, the existence of common antigenic
determinants as drivers of disease was suggested [44]. Both
autoantigens arising upon apoptosis or oxidation-specific epi-
topes, and exogenous microbial antigens were identified as
epitopes for these stereotyped BCRs. Of clinical importance,
subsets of CLL patients with restricted BCRs have been identified
and associated with clinical outcome [44]. Whereas stereotyped
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subsets #2 and #8 using the variable genes IGHV3-21 and IGHV4-
39, respectively, are linked to poor prognosis, patients of
stereotyped subset #4 using the immunoglobulin genes IGHV4-
34 and IGKV2-30 develop indolent disease [45]. In addition, CLL-
specific HCDR3 regions of the BCR were shown to harbor antigen-
independent cell-autonomous signaling, which is dependent on
an internal epitope of the BCR [46]. The characteristics of BCRs
expressed by leukemic B cells of the Eµ-TCL1 mouse model are
very similar to what is known in patients, with stereotyped BCRs
reactive for microbial or autoantigens, the main one being
phosphatidylcholine (PtC), identified as drivers of leukemia
development [6]. Further, selection for PtC-reactive B cells was
shown to increase the aggressiveness of the leukemia in the Eµ-
TCL1 mouse model [16]. This is in line with our findings that
identified the PtC-reactive, stereotyped BCRs using the variable
genes Ighv11-2 and Ighv12-3 as the most frequent clonotypes of
the malignant B cells, together with Ighv1-55. Autoreactive CD5+ B
cells with restricted BCRs were shown to be the origin of CLL
development in aging mice [47], in which chronic stimulation by
autoantigens causing persistent inflammation adds to leukemia
progression. This confirms that CLL development in the Eµ-TCL1
mouse model is driven by antigenic stimulation of the BCR.
Even though CLL is defined as a disease of monoclonal B cells

having a unique IGH gene rearrangement, with increasing
sequencing sensitivity a considerable fraction of cases with more
than one clonotype was detected [48–50]. Two productive IGH
rearrangements were discussed to arise in a single CLL cell, which

might not follow the rule of allelic exclusion allowing only one
productive IGH rearrangement. However, single-cell sequencing
showed that allelic exclusion was generally maintained in CLL, and
multiple productive IGH rearrangements are rather derived from
distinct/unrelated clones in selected cases [48]. Bi- or multi-
clonality in CLL was shown to comprise of either a minor and a
major, or equally sized clones, which persisted in patients over
time and treatment. Even though the number of analyzed cases is
small, multiclonality seemed to be more abundant in CLL cases
with mutated IGHV genes, which is the group of patients with less
aggressive disease. This is in line with our findings in the Eµ-TCL1
mouse model, in which multiclonality is rare and associated with
an inferior engraftment rate of leukemic cells in WT mice
representing a feature of lower aggressiveness. A previous study
compared clonality of malignant B cells in the Eµ-TCL1 model at 4
and 8 months of age and detected several clonotypes at the
earlier time point, whereas one major BCR rearrangement was
observed in 8-month-old mice suggesting monoclonal expansion
of CLL cells during progressive disease [51].
By combining patterns of BCR dynamics and associated SNV-

defined subclones, we investigated tumor heterogeneity and
evolution in serially transplanted tumors of the Eμ-TCL1 mouse
model. Three patterns of evolving SNV-defined subclones and BCR
clonotypes emerged from primary to transplanted tumors. In the
first pattern, both BCR clonotypes as well as somatic variants were
displaced by novel clones after serial transplantation of the
tumors. In the second pattern, the same BCR clonotypes and SNV-
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defined clones remained stable at the primary and transplanted
time points. The third pattern showed tumors in which the BCR
clonotypes remained constant but genetic changes were
observed by shifts in SNV-defined clones. The variation in clonal
evolution likely depends on the potency of the BCR clones as well
as the accumulation of somatic variants and thereby affected
genes. The dynamic loss and gain of BCR clonotypes as well as
SNV-defined subclones could be indicative of differences in the
selection pressure mediated by the tumor microenvironment,
including the strength of antitumor immune responses during the
course of CLL. Clonal evolution has been shown to be hetero-
geneous also in patients with CLL and mainly driven by treatment
[2]. However, also in untreated CLL, dynamic changes in the
disease course of CLL were shaped by the genetic events that
were already present in the early slow-growing stages [52].
Especially, subclones with aberrations of known CLL driver genes
were shown to harbor a growth advantage over other clones and
to display accelerated growth.
Among the well-recognized cancer drivers, MYC appeared to be

affected by several recurrent genetic aberrations in CLL[2]. MYC
activity has been mainly associated with aggressive, high grade
B-cell malignancies [30], and mice with overexpression of Myc in B
cells (Eµ-Myc) develop an aggressive lymphoma/leukemia [53].
Although it is rare, an amplification of 8q24, the genomic locus of
Myc in humans, has been associated with relapsed/refractory CLL
cases previously treated with chemo(immuno)therapy [54].
Furthermore, 8q24/MYC gain is often acquired during the course
of disease in CLL and not found in the early stages of the disease.
If presented in a complex karyotype, it is frequently associated
with Richter’s transformation, refractoriness to therapy and an
aggressive clinical course [55]. This is in line with our data that
clearly show a shorter overall survival of CLL patients harboring an
8q24 amplification. In the Eµ-TCL1 mouse model, we observed a
chromosomal gain of Myc in almost all analyzed tumors which
resulted in an aberrant expression of MYC protein in the
malignant B cells up to the level of B cells from the Eµ-Myc
mouse model. Interestingly, lack of this gain was linked to a low
engraftment rate of tumors upon transplantation. Altogether, our
data suggest that MYC is a potent driver of CLL development, and
the Eµ-TCL1 mouse line as preclinical model for aggressive, MYC-
driven CLL.

METHODS
A detailed description of methods and analyses can be found in a
supplementary file.

Mouse models
Eµ-TCL1 (TCL1) mice on C57BL/6 background were kindly provided by
Carlo M. Croce (The Ohio State University, Columbus, Ohio, USA) [4].
Characteristics of all Eµ-TCL1 mice used for RACE-PCR and Exome-seq are
described in Table S9. Characteristics of all Eµ-TCL1 mice used for FISH are
described in Table S8. Adoptive transfer (AT) of TCL1 tumors, collection of
tissue samples from mice and flow cytometry were performed as
previously described [56]. All animal experiments were carried out
according to governmental and institutional guidelines and authorized
by the local authorities (Regierungspräsidium Karlsruhe, Germany, permit
numbers: DKFZ337, G-36/14, G-98/16, and G123/14).

Mouse immunoglobulin repertoire sequencing
RNA was used for RACE-PCR according to previously described protocols
[57, 58]. List of RACE-PCR oligonucleotides are provided in Table S9.

Sequencing and alignment
Library preparation for targeted sequencing was performed using
SureSelectXT Mouse All Exon kit from Agilent. The samples were
subsequently sequenced on HiSeq2000 or HiSeq4000 platforms using
100-bp paired-end reads with 4 samples per lane according to the
manufacturer’s instructions at the DKFZ Genomics and Proteomics Core
Facility.
Data from WES and targeted sequencing can be viewed and down-

loaded at https://www.ebi.ac.uk/ena/browser/home under the project Id
PRJEB42362.

Patients and survival analysis
The study was approved by the Ethics Committee of the University of
Heidelberg. For 136 CLL patients for which WGS or WES has been
performed [59], time to first treatment and overall survival were calculated
based on clinical follow-up.
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