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INTRODUCTION
Predicting the fate of someone with acute myeloid leukaemia
(AML) at diagnosis is challenging [1, 2]. We recently reviewed
several of these complexities in achieving accurate and precise
estimates of outcomes in LEUKAEMIA [3]. Initial prediction efforts
focused on clinical and laboratory co-variates such as WBC,
percentage or numbers of myeloblasts and histology [4].
Cytogenetics data were soon added [5]. Most recently, data from
studies of mutation topography, typically detected by targeted or
next-generation sequencing (NGS), were added often displacing
prior predictive co-variates. For example, the 2017 European
Leukemia Net (ELN) model includes only data on cytogenetics and
mutation topography. Predictive models using the expression
pattern of genes related to leukaemia cell stemness are also
reported [6]. Also new is the use of data from measurable residual
disease (MRD)-testing but these data are not applicable to
predicting outcomes at diagnosis [7]. The most recent predictive
models divide persons with AML into more than 15 cohorts with
statistically different prognoses [8–10]. Is this a clinically manage-
able number of predictive cohorts and are there convincing data
these classifications are improving outcomes of persons with
AML? Data so far show only a modest impact, if any [11]. For
example, data from the US Surveillance and End Results (SEER)
dataset indicate only a 10% 5-year survival improvement since
1999 (https://seer.cancer.gov/statfacts/html/amyl.html).
Most prediction models have concordance statistics (C-statistics) of

0.65–0.80 indicating only fair accuracy [3]. Can we do better? Are we
too focused solely on leukaemia cell biology whilst ignoring other
potentially important mechanisms influencing the complex interac-
tion between the leukaemia and the host such as the bone marrow
micro-environment and host immune response. Also, are there
important aspects of the leukaemia cell biology we are likewise
ignoring such as metabolism? Put otherwise, are there latent co-
variates, co-variates that might improve prediction accuracy?
Recent studies suggest data regarding the bone marrow micro-

environment, immune system and leukaemia cell metabolism
might improve prediction accuracy. These data are reported to
independently predict outcomes such as complete remission rate,
cumulative incidence of relapse, event-, relapse- and leukaemia-
free survivals (EFS, RFS and LFS) and/or survival in multi-variable
analyses. Moreover, these co-variates are reported to improve the
accuracy of more widely-used models such as the 2017 ELN
model. We discuss these models below.

Micro-environment and immune-risk models
Considerable data indicate cells in the bone marrow microenvir-
onment, including immune, endothelial and stromal cells, the
composition of the extracellular matrix and soluble factors such as
cytokines, hepatocyte growth factor, vascular endothelial growth
factor and angiopoietins are important in leukaemia development
and progression [12]. The impact of the immune system in AML is
increasingly studied. For example, there are several reports of
correlations between blood and bone marrow natural killer (NK)-
cells and survival [13, 14]. Specific T-cell phenotypes are also
reportedly associated with leukaemia prognosis. For example,
some data indicate pre- or post-therapy blood concentrations of
PD-1+CD8+ T-cells and pre-therapy blood CD28-CD57+CD8+
T-cells correlate with EFS and survival [13]. Another study reported
a high proportion of blood eomesodermin (Eomes +) T-betlow

CD8+ T-cells correlates with fewer complete remissions (CR) and
worse survival [15].
Zhang et al. reported frequencies of CD4+CD25+CD127lo

regulatory T-cells (Tregs) in blood and bone marrow were
associated to poor prognosis [16]. Han et al. reported increased
inducible T-cell co-stimulator ligand positive Treg frequency in
bone marrow was an unfavourable prognostic marker [17]. Kong
et al. reported T-cell immunoglobulin and immune receptor
tyrosine-based inhibitory motif domain (TIGIT) expression on
blood CD8+ T-cells is increased in persons with AML and
correlates with induction chemotherapy failure and with post-
transplant relapse [18]. Several studies report high expression of
PD-1, PD-L1 or PD-L2 was associated with poor survival [19, 20].
Increased co-expression of PD-1/CTLA-4 or PD-L2/CTLA-4 corre-
lated with poor survival. Co-expression of PD-1/PD-L1, PD-1/PD-
L1/PD-L2, or PD-1/LAG-3 correlated with poor survival in subjects
with FLT3, RUNX1 and/or TET2 mutations [20]. Stamm et al.
reported high PVR and PVRL2 expression, as novel immune
checkpoints, correlated with poor outcomes [21].
There are several predictive models of AML using data of

immune cells identified by multi-parameter flow cytometry and/or
NGS with bio-informatics. We reported an immune risk score
derived from public datasets from Gene Expression Omnibus
where we estimated proportions of immune cells in bone marrow
samples using CIBERSORTx [22]. Data of six types of immune cells
were used to develop prediction models for EFS and survival in
persons receiving intensive induction chemotherapy. Prediction
value of the model was validated in several datasets.
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Concentrations of activated NK-cells had the strongest predictive
weight. The C-statistics of the immune risk score was 0.68
(0.63–0.73). However, A model adding the immune risk score to
the ELN risk category (C-statistics 0.78 (0.73, 0.82) and age (C-
statistics 0.66 [0.62–0.70]) had a revised C-statistics of 0.83 [0.79,
0.87]. The upper boundary of the 95% confidence interval is a
marked improvement. Figure 1 displays the progressive improve-
ment in prediction accuracy by combining different predictive co-
variates and scores. Similar data are reported by others. For
example, Bruck et al. identified several immune cell types with
phenotypes in bone marrow correlated with prognosis including
M1-polarised macrophages, FOXP3+ helper T-cells, Tregs and
CTLA4−LAG3− helper T-cells [23]. Dong et al. constructed a
survival prediction model for persons with cytogenetically normal
AML based on expression of 9 immune-related genes with
C-statistics of 0.79 [24]. Zhu et al. reported a prediction model
composed of 6 immune-related genes with an C-statistics 0.72
[25]. Cytokine profiles and interactions have also been used to
predict outcomes of AML therapy. For example, one study
reported correlations between serum concentrations of FLT3-
ligand and interleukin-6 with LFS and survivalL [26]. Also, tumour
necrosis factor-α, serum soluble interleukin-2 receptor-α (sIL2RA)
and IL-10 concentration are reported to independently predict
survival in AML [27–29]. In conclusion, immune-based prognostic
and prediction models often complement and/or improve current
AML prediction models.

Metabolic-risk models
Another approach to improving prediction accuracy in AML involves
leukaemia cell metabolism. Mutations in genes with metabolically
active gene products such as isocitrate dehydrogenase isoform-1
(IDH1) and IDH2 are associated with changes in cell metabolism and

possibly leukaemia initiation [30, 31] Chen et al. identified 47
metabolites significantly altered in serum samples from 400 subjects
with AML compared with controls by gas chromatography time-of-
flight mass spectrometry-based metabolomics [32]. They identified six
serum glucose metabolites, lactate, 2-oxoglutarate, pyruvate, 2-
hydroygluterate, glycerol-3-phosphate and citrate, whose concentra-
tions correlated with EFS and survival in subjects receiving induction
chemotherapy and validated in another cohort. Zhou et al. reported
increased plasma concentrations of lysine and taurine predict
outcomes of persons with AML-M2 [33].
Serum metabolomic profiling has also been used to identify

metabolites associated with outcomes of children with AML
receiving chemotherapy [34]. Higher levels of pantothenic acid
were associated with response to cytarabine and with worse RFS.
We and others reported prognostic models based on
metabolism-related gene expression data from public datasets
[35, 36]. Both models were validated with C-statistics of 0.88 and
0.78. Wang et al. [36] combined their metabolic model with
cytogenetics and age co-variates improving the C-statistics for
survival prediction from 0.69 and 0.65 to 0.78, a significant
improvement.

Other predictive co-variates
Two recent studies in older persons with AML using predomi-
nately conventional subject-related co-variates reported
C-statistics of 0.72–0.74 similar to the C-statistic of the 2017 ELN
risk classification [37, 38]. Predictive value of epigenetic
regulatory genes such as DNMT3A and global methylation state
have also been evaluated [39–41]. For example, a genome-wide
methylation score is reported to predict outcomes of persons
with AML with a higher methylation-score associated with a lower
rate of complete remission [42]. Some alternative splicing events
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Fig. 1 Comparison of C-statistics of the merged risk score and other single risk categories. A C-statistics were compared for prognostic co-
variates and risk scores alone and combined. A higher C-statistic indicates better prediction accuracy. B Areas under the curve (AUC) of a
receiver-operator characteristic (ROC) curve were compared for prognostic co-variates and risk scores alone or combined. The dashed line
indicates no prediction accuracy. An increasing AUC indicates increasing prediction accuracy.
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are also reported predict AML outcomes with C-statistics of 0.96
but without external validation [43]. Adding data of splicing
signature improved prediction accuracy to the 2017 ELN risk
classification with C-statistics of about 0.75 and a leukaemia
stemness score combine with splicing signature improved
prediction accuracy to the 2017 ELN risk classification with
C-statistics of about 0.72 [44]. To the extent infection correlates
with risk of death during intensive induction chemotherapy
studies of the gastro-intestinal microbiome can also improve
predicting EFS and survival [45].

Therapy
Accurate prediction can improve therapy decisions in persons
with AML [3]. Increasingly, physicians are aware of the importance
of prediction accuracy in choosing competing therapies such as
intensive induction therapy with cytarabine and daunorubicin
versus less intensive therapy with azacytidine and venetoclax.
Some recent studies report benefits of metabolic interventions
such as enasideinib and ivosidenib but these are unconfirmed in
randomised controlled trials [46].

DISCUSSION
Accurate prediction is fundamental to optimising AML therapy
(Fig. 2). Data we discuss indicate micro-environment, immune and
metabolism-related co-variates and others such as epigenetics
and splicing gene profiles are independent outcome predictors in
AML in multi-variable regression analyses. Adding these data to
current prediction models increases accuracy including newer
models incorporating mutation topography (Table 1).
None of current or newer prediction models we cite included

data of MRD-testing at the end of therapy as an outcome
predictor in model building. Whether current or new pre-therapy
predictive models are better than results of post-therapy MRD-
testing in predicting post-remission therapy outcomes is uncer-
tain. Elsewhere we discuss the advantages and limitations of post-
therapy MRD-testing as a predictor of subsequent outcomes in
persons with AML [47]. Presently, MRD-testing data correlate
strongly with outcomes but has high false-positive and -negative
rates. Whether this limitation can be overcome is uncertain.
Moreover, utility is limited to post-therapy setting rather than
being useful at diagnosis.
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Another issue is why and when do we want to determine
prognosis or predict outcomes. Is it to identify the best initial
therapy, say intensive therapy with cytarabine and daunorubicin,
less intensive chemotherapy say with azacitidine with venetoclax,
or a targeted therapy, say with enasideinib or ivosidenib? This
decision is driven not only by the co-variates we identify but also
by co-variates less often considered such as co-morbidities, access
to medical care, expertise of the treating team, sophistication of
supportive care, patient preference and economics. Or is our goal
to predict what intervention should be given next. Obviously, this
will be largely driven by outcome of the initial therapy and co-
variates we cite above. For example, if the goal of an older person
with substantial co-morbidities is to achieve the longest interval of
high quality-of-life, achieving a complete remission may not be
the appropriate therapy objective. In contrast, a young, otherwise
healthy person may be willing to accept substantial adverse
events for a chance, however small, of cure. In this instance a co-
variate such as post-therapy MRD-testing may be the best
predictive biomarker. What is important is that physicians and
patients acknowledge our inaccuracy and imprecision in predict-
ing outcomes of an intervention. What level of accuracy and
precision is acceptable to drive a therapy decision is obviously
subjective with no correct answer?
The new prediction models we discuss need optimisation and

external validation in large datasets of uniformly-treated persons.
To know if they are prognostic rather than predictive, they need to
be tested in studies of diverse therapies. If validated they could be
introduced into clinical practice and help with therapy decision-
making.
In summary we show adding micro-environment-, immune- and

metabolism-related and other co-variates improves prediction
accuracy in newly-diagnosed persons with AML, predominately

young people receiving intensive induction chemotherapy.
Whether these co-variates are similarly useful in other therapy
settings in unknown such as less intensive or targeted and
immune. Because initial intensive therapy of AML is relatively
uniform these co-variates are presently best regarded as
predictive rather than prognostic. In appropriate therapy settings
using prediction models which include micro-environment-,
immune- and metabolism-related co-variates may be clinically
useful. However, we need validation and optimisation in large
prospective dataset of AML receiving diverse therapies such as
cytarabine and daunorubicin versus azacitidine and venetoclax or
enasideinib. When these are accomplished these new models be
clinically-useful to predict outcomes and choose therapy(ies).
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