Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Regulatory T cells promote the stemness of leukemia stem cells through IL10 cytokine-related signaling pathway

Abstract

Regulatory T cells (Tregs) could maintain the characteristics of stem cells and inhibit the differentiation of normal hematopoietic stem/progenitor cells. Recent studies have shown that Tregs, as an important component of acute myeloid leukemia (AML) microenvironments, can help AML cells to evade immune surveillance. However, their function in directly regulating the stemness of AML cells remains elusive. In this study, the increased stemness of AML cells promoted by Tregs was verified in vitro and in vivo. The cytokines released by Tregs were explored, the highly expressed anti-inflammatory cytokine IL10 was found, which could promote the stemness of AML cells through the activation of PI3K/AKT signal pathway. Moreover, disrupting the IL10/IL10R/PI3K/AKT signal in AML/ETO c-kitmut (A/Ec) leukemia mice could prolong the mice survival and reduce the stemness of A/Ec leukemia cells. Finally, it was confirmed in patient samples that the proportion of Tregs to leukemia stem cells (LSCs) was positively correlated, and in CD34+ primary AML cells, the activation of PI3K/AKT was stronger in patients with high Tregs’ infiltration. After rhIL10 treatment, primary AML cells showed increased activation of PI3K/AKT signaling. Therefore, blocking the interaction between Tregs and AML cells may be a new approach to target LSCs in AML treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tregs promoted the initiation of leukemia and shortened mice survival in vivo.
Fig. 2: Tregs increased the population of LSCs in AML cells in vitro.
Fig. 3: IL10 enhanced the stemness of AML cells.
Fig. 4: IL10R was required for promoting the stemness of leukemia cells by Tregs.
Fig. 5: PI3K/AKT signaling was required for promoting the stemness of leukemia cells by Tregs.
Fig. 6: Tregs promoted the expression of OCT4 and NANOG in AML cells.
Fig. 7: Blockade of IL10R or AKT activation could reduce the stemness of leukemia cells in vivo.
Fig. 8: IL10/IL10R/PI3K/AKT axis was existing in primary AML cells.

Similar content being viewed by others

References

  1. Kumar CC. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer. 2011;2:95–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roboz GJ. Current treatment of acute myeloid leukemia. Curr Opin Oncol.2012;24:711–9.

    Article  CAS  PubMed  Google Scholar 

  3. Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.

    Article  PubMed  Google Scholar 

  4. Duployez N, Marceau-Renaut A, Villenet C, Petit A, Rousseau A, Ng SWK, et al. The stem cell-associated gene expression signature allows risk stratification in pediatric acute myeloid leukemia. Leukemia. 2019;33:348–57.

  5. Agarwal P, Bhatia R. Influence of bone marrow microenvironment on leukemic stem cells: breaking up an intimate relationship. Adv Cancer Res. 2015;127:227–52.

    Article  CAS  PubMed  Google Scholar 

  6. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25:1315–21.

    Article  CAS  PubMed  Google Scholar 

  7. Wang R, Feng W, Wang H, Wang L, Yang X, Yang F, et al. Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease progression in mouse leukemia model. Cancer Lett. 2020;469:151–61.

    Article  CAS  PubMed  Google Scholar 

  8. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013;138:105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood. 2011;118:5084–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A, et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res. 2009;15:3325–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang W, Xu Y. Clinical significance of Treg cell frequency in acute myeloid leukemia. Int J Hematol. 2013;98:558–62.

    Article  CAS  PubMed  Google Scholar 

  12. Ge W, Ma X, Li X, Wang Y, Li C, Meng H, et al. B7-H1 up-regulation on dendritic-like leukemia cells suppresses T cell immune function through modulation of IL-10/IL-12 production and generation of Treg cells. Leuk Res. 2009;33:948–57.

    Article  CAS  PubMed  Google Scholar 

  13. Curti A, Trabanelli S, Onofri C, Aluigi M, Salvestrini V, Ocadlikova D, et al. Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica. 2010;95:2022–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coles SJ, Hills RK, Wang EC, Burnett AK, Man S, Darley RL, et al. Increased CD200 expression in acute myeloid leukemia is linked with an increased frequency of FoxP3+ regulatory T cells. Leukemia. 2012;26:2146–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han Y, Dong Y, Yang Q, Xu W, Jiang S, Yu Z, et al. Acute myeloid leukemia cells express ICOS ligand to promote the expansion of regulatory T cells. Front Immunol. 2018;9:2227.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhou Q, Bucher C, Munger ME, Highfill SL, Tolar J, Munn DH, et al. Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in murine acute myeloid leukemia. Blood. 2009;114:3793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tao Q, Pan Y, Wang Y, Wang H, Xiong S, Li Q, et al. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts. Int J Cancer. 2015;137:2384–93.

    Article  CAS  PubMed  Google Scholar 

  18. Xu Y, Dong X, Qi P, Ye Y, Shen W, Leng L, et al. Sox2 communicates with Tregs through CCL1 to promote the stemness property of breast cancer cells. Stem Cells. 2017;35:2351–65.

  19. Urbieta M, Barao I, Jones M, Jurecic R, Panoskaltsis-Mortari A, Blazar BR, et al. Hematopoietic progenitor cell regulation by CD4+CD25+ T cells. Blood. 2010;115:4934–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature. 2011;474:216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Setiady YY, Coccia JA, Park PU. In vivo depletion of CD4+FOXP3+ Treg cells by the PC61 anti-CD25 monoclonal antibody is mediated by FcgammaRIII+ phagocytes. Eur J Immunol. 2010;40:780–6.

    Article  CAS  PubMed  Google Scholar 

  22. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disco. 2012;2:401–4.

    Article  Google Scholar 

  23. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Wei SH, Ho AS, de Waal Malefyt R, Moore KW. Expression cloning and characterization of a human IL-10 receptor. J Immunol. 1994;152:1821–9.

    Article  CAS  PubMed  Google Scholar 

  26. Verma R, Balakrishnan L, Sharma K, Khan AA, Advani J, Gowda H, et al. A network map of Interleukin-10 signaling pathway. J Cell Commun Signal. 2016;10:61–67.

    Article  PubMed  Google Scholar 

  27. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Festuccia N, Halbritter F, Corsinotti A, Gagliardi A, Colby D, Tomlinson SR, et al. Esrrb extinction triggers dismantling of naive pluripotency and marks commitment to differentiation. EMBO J. 2018;37:e95476.

  29. Mohiuddin IS, Wei SJ, Kang MH. Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165432.

    Article  CAS  PubMed  Google Scholar 

  30. Jeter CR, Yang T, Wang J, Chao HP, Tang DG. Concise Review: NANOG in cancer stem cells and tumor development: an update and outstanding questions. Stem Cells. 2015;33:2381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Picot T, Aanei CM, Fayard A, Flandrin-Gresta P, Tondeur S, Gouttenoire M, et al. Expression of embryonic stem cell markers in acute myeloid leukemia. Tumour Biol. 2017;39:1010428317716629.

    Article  PubMed  Google Scholar 

  32. Yin JY, Tang Q, Zhai LL, Zhou LY, Qian J, Lin J, et al. High expression of OCT4 is frequent and may cause undesirable treatment outcomes in patients with acute myeloid leukemia. Tumour Biol. 2015;36:9711–6.

    Article  CAS  PubMed  Google Scholar 

  33. Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem. 2005;280:24731–7.

    Article  CAS  PubMed  Google Scholar 

  34. Xu DD, Wang Y, Zhou PJ, Qin SR, Zhang R, Zhang Y, et al. The IGF2/IGF1R/Nanog signaling pathway regulates the proliferation of acute myeloid leukemia stem cells. Front Pharm. 2018;9:687.

    Article  Google Scholar 

  35. Lin Y, Yang Y, Li W, Chen Q, Li J, Pan X, et al. Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Mol Cell. 2012;48:627–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shenghui Z, Yixiang H, Jianbo W, Kang Y, Laixi B, Yan Z, et al. Elevated frequencies of CD4(+) CD25(+) CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer. 2011;129:1373–81.

    Article  PubMed  Google Scholar 

  37. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  CAS  PubMed  Google Scholar 

  38. Othus M, Estey EH, Garcia-Manero G, Wood BL, Stirewalt DL, Godwin JE, et al. Second cycle remission achievement with 7+3 and survival in adults with newly diagnosed acute myeloid leukemia: analysis of recent SWOG trials. Leukemia. 2019;33:554–8.

    Article  PubMed  Google Scholar 

  39. Kapur R, Kim M, Aslam R, McVey MJ, Tabuchi A, Luo A, et al. T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10. Blood. 2017;129:2557–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nishioka C, Ikezoe T, Yang J, Nobumoto A, Kataoka S, Tsuda M, et al. CD82 regulates STAT5/IL-10 and supports survival of acute myelogenous leukemia cells. Int J Cancer. 2014;134:55–64.

    Article  PubMed  Google Scholar 

  41. Nishioka C, Ikezoe T, Pan B, Xu K, Yokoyama A. MicroRNA-9 plays a role in interleukin-10-mediated expression of E-cadherin in acute myelogenous leukemia cells. Cancer Sci. 2017;108:685–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang L, Dong Y, Li Y, Wang D, Liu S, Wang D, et al. IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-kappaB/Notch1 pathway in non-small cell lung cancer. Int J Cancer. 2019;145:1099–110.

    Article  CAS  PubMed  Google Scholar 

  43. Beguelin W, Sawh S, Chambwe N, Chan FC, Jiang Y, Choo JW, et al. IL10 receptor is a novel therapeutic target in DLBCLs. Leukemia. 2015;29:1684–94.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M, et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia. 2004;18:267–75.

    Article  CAS  PubMed  Google Scholar 

  45. Doepfner KT, Spertini O, Arcaro A. Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia. 2007;21:1921–30.

    Article  CAS  PubMed  Google Scholar 

  46. Stankiewicz MJ, Crispino JD. AKT collaborates with ERG and Gata1s to dysregulate megakaryopoiesis and promote AMKL. Leukemia. 2013;27:1339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen P, Huang H, Wu J, Lu R, Wu Y, Jiang X, et al. Bone marrow stromal cells protect acute myeloid leukemia cells from anti-CD44 therapy partly through regulating PI3K/Akt-p27(Kip1) axis. Mol Carcinog. 2015;54:1678–85.

    Article  CAS  PubMed  Google Scholar 

  48. Huang FF, Wu DS, Zhang L, Yu YH, Yuan XY, Li WJ, et al. Inactivation of PTEN increases ABCG2 expression and the side population through the PI3K/Akt pathway in adult acute leukemia. Cancer Lett. 2013;336:96–105.

    Article  CAS  PubMed  Google Scholar 

  49. Mohammadi S, Ghaffari SH, Shaiegan M, Zarif MN, Nikbakht M, Akbari Birgani S, et al. Acquired expression of osteopontin selectively promotes enrichment of leukemia stem cells through AKT/mTOR/PTEN/beta-catenin pathways in AML cells. Life Sci. 2016;152:190–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was accepted as a poster abstract by the ASH Program Committee at the 59th Annual Meeting and Exposition, December 9-12, 2017, Atlanta, GA. This work was supported by grants from the National Natural Science Foundation of China (81700163, 82070170 and 81830005), Tianjin Municipal Science and Technology Commission Grant (20JCQNJC00290), and National Key Research and Development Program of China (2019YFA0110200).

Author information

Authors and Affiliations

Authors

Contributions

YXX conceived the study, performed most of the experiments, analyzed the data, and wrote the paper. JLM and YW helped perform some of the experiments. WZ helped the bioinformatics analysis. HYX and QR provided the study material. KJT and ZT supported administrative management. MW and JXW supervised the study and reviewed and approved the paper. All authors read and approved the final paper.

Corresponding authors

Correspondence to Min Wang or Jianxiang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Mou, J., Wang, Y. et al. Regulatory T cells promote the stemness of leukemia stem cells through IL10 cytokine-related signaling pathway. Leukemia 36, 403–415 (2022). https://doi.org/10.1038/s41375-021-01375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01375-2

This article is cited by

Search

Quick links