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Acute lymphoblastic leukemia

Identification and characterization of relapse-initiating cells
in MLL-rearranged infant ALL by single-cell transcriptomics
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Infants with MLL-rearranged infant acute lymphoblastic leukemia (MLL-r iALL) undergo intense therapy to counter a highly
aggressive malignancy with survival rates of only 30–40%. The majority of patients initially show therapy response, but in two-thirds
of cases the leukemia returns, typically during treatment. The glucocorticoid drug prednisone is established as a major player in the
treatment of leukemia and the in vivo response to prednisone monotreatment is currently the best indicator of risk for MLL-r iALL.
We used two different single-cell RNA sequencing technologies to analyze the expression of a prednisone-dependent signature,
derived from an independent study, in diagnostic bone marrow and peripheral blood biopsies. This allowed us to classify individual
leukemic cells as either resistant or sensitive to treatment and show that quantification of these two groups can be used to better
predict the occurrence of future relapse in individual patients. This work also sheds light on the nature of the therapy-resistant
subpopulation of relapse-initiating cells. Leukemic cells associated with high relapse risk are characterized by basal activation of
glucocorticoid response, smaller size, and a quiescent gene expression program with cell stemness properties. These results
improve current risk stratification and elucidate leukemic therapy-resistant subpopulations at diagnosis.

Leukemia (2022) 36:58–67; https://doi.org/10.1038/s41375-021-01341-y

INTRODUCTION
Acute lymphoblastic leukemia (ALL) in infants (i.e., children < 1
year of age) is frequently driven by chromosomal translocations of
the mixed lineage leukemia (MLL or KMT2A) gene, which occur in
~80% of the cases. Translocations of the MLL gene on chromo-
some 11q23 lead to fusions of the N-terminus of MLL to the C-
terminus of one of many known translocation partner genes. The
majority of infant ALL patients carry one of three recurrent types
of MLL translocations in which the MLL gene becomes fused to
either AF4 (aka AFF1; 49% of the cases), ENL (aka MLLT1; 22% of the
cases), or AF9 (aka MLLT3; 16% of the cases) [1]. MLL-rearranged
infant ALL (MLL-r iALL) represents a rare but highly aggressive
type of childhood leukemia that is notoriously characterized by
chemotherapy resistance and high relapse rates, leading to a very
poor prognosis. Regardless of the type of MLL translocation, event-
free survival (EFS) rates for MLL-r iALL patients remain at 30–40%
when treated according to the international collaborative INTER-
FANT treatment protocol [2, 3], whereas cases without MLL
translocations fare significantly better at 75–80%.
Despite the massive disparity in EFS, the majority (~95%) of

MLL-r iALL patients seemingly achieve disease remission after
induction therapy. In two-thirds of the cases, however, the

leukemia reemerges, typically within the first year from diagnosis
and while still on treatment, giving rise to an even more
chemotherapy-resistant form.
Relapse occurrence in infant ALL is usually fatal and despite

advances in the field its mechanism still needs to be elucidated.
Currently, one of the best predictors of future relapse occurrence
is the response to a 7-day window of prednisone monotherapy
administered prior to induction therapy [2, 3]. This suggests that
predisposition to the effects of prednisone at diagnosis might play
a pivotal role in the development of relapse. Many hypotheses
about relapse emergence also involve cellular heterogeneity
[4–10] and a high degree of clonal heterogeneity has been
observed in MLL-r iALL [11, 12].
To shed light on the interplay between sensitivity to

prednisone, cell heterogeneity, and relapse occurrence, we
decided to exploit the transformative ability of single-cell RNA
sequencing (scRNA-seq) to analyze heterogeneous systems
[13–18]. This allowed us to accurately predict which patients
were at high risk of leukemia relapse, based on scRNA-seq
analyses on diagnostic primary MLL-r iALL samples. In addition,
we were able to characterize the nature of these relapse-
predicting cells.

Received: 10 April 2020 Revised: 23 June 2021 Accepted: 30 June 2021
Published online: 24 July 2021

1Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands. 2These authors contributed equally: Tito Candelli, Pauline Schneider. 3These authors jointly
supervised this work: Frank C. P. Holstege, Thanasis Margaritis, Ronald W. Stam. ✉email: R.W.Stam@prinsesmaximacentrum.nl

www.nature.com/leu Leukemia

http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-021-01341-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-021-01341-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-021-01341-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-021-01341-y&domain=pdf
http://orcid.org/0000-0003-0162-9436
http://orcid.org/0000-0003-0162-9436
http://orcid.org/0000-0003-0162-9436
http://orcid.org/0000-0003-0162-9436
http://orcid.org/0000-0003-0162-9436
http://orcid.org/0000-0003-4040-2015
http://orcid.org/0000-0003-4040-2015
http://orcid.org/0000-0003-4040-2015
http://orcid.org/0000-0003-4040-2015
http://orcid.org/0000-0003-4040-2015
http://orcid.org/0000-0003-4986-1656
http://orcid.org/0000-0003-4986-1656
http://orcid.org/0000-0003-4986-1656
http://orcid.org/0000-0003-4986-1656
http://orcid.org/0000-0003-4986-1656
mailto:R.W.Stam@prinsesmaximacentrum.nl
www.nature.com/leu


METHODS
Patient samples
Bone marrow (BM) biopsies and peripheral blood (PB) samples taken at
diagnosis were from infants (<1 year of age) with MLL-rearranged ALL and
treated according to the international collaborative Interfant-99 and
Interfant-06 protocols [2, 3]. We did not distinguish between the two
protocols as the treatment differences between the two are minimal and
no outcome differences were detected [3]. Samples used were from MLL-
rearranged pro-B infant ALL patients, carrying either of the two most
common MLL fusion genes, i.e., MLL-AF4 or MLL-ENL [19], and with cell
viability over 65%. Samples were either from patients with at least 7-year
relapse-free survival or from patients who experienced relapse within 2
years after diagnosis. Care was taken to spread attributes such as sex and
translocation type across the dataset (Table 1). Informed consent was
obtained from the parents or legal guardians according to the Helsinki
Declaration. BM and PB samples were processed as described [20].
Leukemic blast percentages (Table 1) were determined microscopically
using May-Grünwald–Giemsa stained cytospin preparations.

Single-cell RNA sequencing
Samples were sorted into 384-well plates (SORT-seq, primers shown in
Supplementary Table 1) or tubes (10x Genomics) using FACS sorting. The
gating strategy employed for sorting is shown in Supplementary Fig. 1.
See Supplementary Methods for more details.
For SORT-seq, 384-well plates with sorted cells were processed into

Illumina sequencing libraries as described [21, 22] and preprocessed as in
ref. [23]. Because of their high variation in gene expression, at this stage
mitochondrial genes were removed. A minimum transcripts threshold was
set to 500 transcripts per cell. The number of detected genes and
adequacy of sequencing were evaluated in Supplementary Fig. 2a, b.
10x Genomics processed samples were prepared and sequenced

according to the manufacturer’s protocol using the Illumina
NextSeq500 sequencer. Reads were processed with the zUMIs pipeline
version 2.2.0 using the same genome and annotation version as in ref. [23].
At this stage, mitochondrial genes were removed and all barcodes with
less than 500 transcripts were excluded.

scRNA-seq analysis
For BM samples, further analysis was performed using R version 3.3.4 and
the package Seurat [24] version 2.1.0 with default parameters unless stated
otherwise. Per-cell transcript counts were normalized to 3500 transcripts.
The first 15 principal components (PCs) of a PC analysis (PCA) were used to
generate t-distributed stochastic neighbor embedding plots (Fig. 1b, c,
Supplementary Fig. 2) and perform Louvain clustering [24] (Fig. 1c) using a
resolution of 1.1. Cluster number 9 consisted of T cells (Supplementary
Fig. 2c, d) and was excluded from further analyses.
For PB samples, further analysis was performed using R version 3.6.0 and

the package Seurat version 3.0.2 with default parameters unless stated
otherwise. Normalization was performed using SCTransform [25]. Gene
filtering was performed as in ref. [23]. The following genes were removed
from all analyses: XIST and TSIX genes as well as all genes on the Y
chromosome and hemoglobin genes. The first 30 PCs were used to
perform Louvain clustering [24] using a resolution of 1.

Gene module scores
Genes used for the calculation of the sensitivity and resistance module
scores were obtained from ref. [26] and are shown in Supplementary
Table 2. Calculation of module scores was performed using the Seurat
AddModuleScore function with modifications [24]. Briefly, each gene is
classified into an expression bin according to its average expression across
all cells. To obtain the score, for each cell, each chosen gene’s expression is
compared to the average of 100 randomly chosen genes from the same
expression bin as a control. The difference between each chosen gene’s
expression and its matching control value is then averaged across all
chosen genes, yielding the final module score.

Categorization of sensitive and resistant cells
Cells were categorized as sensitive when their sensitivity score was above
the median sensitivity score of the complete dataset and their resistance
score was below the median resistance score calculated over the whole
dataset. Vice versa, cells were categorized as resistant when their
resistance score was above and their sensitivity score was below the
corresponding median scores of the dataset.

PC score
The PC score constitutes the first PC of a PCA calculated using the union of
sensitivity and resistance module genes on scaled log normalized
expression values (see “Gene module scores” section above). As depicted
in Supplementary Fig. 3, a high PC score corresponds to cells with a
predicted high sensitivity to treatment.

In vitro prednisolone treatment
In vitro drug exposures were performed by incubation with 100 µg/mL
prednisolone (BUFA, Uitgeest, The Netherlands), the liver-activated form of
prednisone, or with vehicle for 3 days. Cells were viably frozen [20] and
later thawed for scRNA-seq. All processed samples had at least 90% blasts.

PB differential expression
To determine genes differentially expressed between sensitive and
resistant cells in 15 PB samples processed with SORT-seq, we defined
cells as sensitive or resistant depending on their module scores (see the
“Methods” section). This yielded 1722 cells in each group. Differential
expression was calculated using the FindMarkers function with default
arguments. The resulting p values were Bonferroni multiple-testing
corrected. Genes with an adjusted p value lower than 0.05 and with an
average log fold change (natural log) above 0.20 were considered
differentially expressed.

Gene Ontology (GO) enrichment
GO category enrichment was calculated using the compareCluster function
from the clusterProfiler R package [27], see Supplementary Methods for
details.

RESULTS
Clustering of leukemic cells according to individual patients
To identify subpopulations of cells potentially associated with
relapse, we analyzed leukemic cells derived from BM biopsies
taken at diagnosis. These samples were obtained from seven MLL-
r iALL patients covering the two most recurrent MLL translocations,
t(4;11) and t(11;19), giving rise to the MLL fusion genes MLL-AF4
and MLL-ENL, respectively [1–3, 21]. We processed the samples
into scRNA-seq libraries using SORT-seq [21] (Fig. 1a), a medium-
throughput platform that provides high sensitivity [28] and
cytometric data on individual cells. As anticipated, cells clustered
largely according to individual patients (Fig. 1b, c). This agrees well
with the personalized nature of cancer [29] and the substantial
patient-to-patient heterogeneity of MLL-r iALL [11, 12].
We identified two clusters with contribution from multiple

patients. These were revealed to be highly proliferating blasts
(Supplementary Fig. 2c, f–g) and healthy T cells (Supplementary
Fig. 2c–e). The latter were removed from further analyses.
Unsupervised clustering did not group leukemic cells by

characteristics such as sex, translocation type, or relapse
occurrence (Supplementary Fig. 2h), underscoring the distinct
nature of individual cancers and the challenge of accurately
predicting treatment outcome.

Single-cell analysis predicts relapse occurrence in MLL-r iALL
BM biopsies
The glucocorticoid drug prednisone is one of the cornerstones of
the treatment of ALLs [30]. The response to 1 week of prednisone
monotherapy is considered a major parameter for current risk
stratification and a strong predictor of clinical outcome [2, 3, 30].
The response to this drug has been studied by a variety of
approaches, including bulk mRNA measurements in samples
derived from pediatric ALL patients [26].
Rather than interpreting these results as revealing a prednisone

gene expression response, we reasoned that apparent up- and
downregulation of specific genes might be at least partially driven
by a process of Darwinian selection. Gene signatures specific to a
preexisting subset of prednisone-resistant cells would emerge as
upregulated after treatment by virtue of their higher survival rate
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even if their expression levels remain constant, while signatures
specific to cells sensitive to treatment would appear down-
regulated for the opposite reason (Fig. 1d). Following this logic,
genes upregulated after prednisone exposure mark leukemic cells
with a high chance of surviving treatment, while genes with

apparent downregulation represent markers of cells sensitive to
treatment and therefore preferentially eliminated by prednisone
exposure.
To explore this possibility, we took advantage of published

differential expression results from the work of Rhein et al. [26]

a
bone marrow 

diagnosis
samples

single cell
suspension

FACS into
384-well plates

RNA
sequencing

FACS-derived
metrics for 
every cell

SORT-seq
protocol

c

1

2

3

4

5

6

7

8

clusters

−40 −20 0 20 40

−4
0

−2
0

0
20

40
60

tSNE 1

tS
N

E
 2

4662R

4483R

8010R

6806R

1977N

1702N

635N

patients

b

−40 −20 0 20 40

−4
0

−2
0

0
20

40
60

tSNE 1

tS
N

E
 2

9relapse within
1 year

≥7 years 
relapse-free 

d e

−0.2 0.0 0.2

−
0.

2
0.

0
0.

2 8010R

−0.2 0.0 0.2

−
0.

2
0.

0
0.

2 6806R

−0.2 0.0 0.2

−
0.

2
0.

0
0.

2 4662R

−0.2 0.0 0.2

−
0.

2
0.

0
0.

2 4483R

−0.2 0.0 0.2

−
0.

2
0.

0
0.

2 1977N

−0.2 0.0 0.2

−
0.

2
0.

0
0.

2 1702N

−0.2 0.0 0.2

−
0.

2
0.

0
0.

2 635N

resistance module score

se
ns

iti
vi

ty
 m

od
ul

e 
sc

or
e

800 20 40 60

0
20

40
60

80

% of resistant cells

%
 o

f s
en

si
tiv

e 
ce

lls

8010R

6806R 4483R

1977N
1702N

4662R

635N

4662R 4483R 8010R 6806R 1977N1702N 635N−
4

−
2

0
2

4

f

g h
≥7 years relapse-free 
relapse within 1 year

P
C

 s
co

re

≥7 years relapse-free
relapse within 1 year 

≥7 years relapse-free 
relapse within 1 year

day 0

day 8 of
prednisone
treatment

vs

370 genes down 
after treatment

78 genes up 
after treatment

markers of 
sensitive cells

markers of 
resistant cells

markers of 
sensitive cells

markers of 
resistant cells

gene-set
module score

calculation
per-cell sensitivity 

module score

per-cell resistance 
module score

gene-set
module score

calculation

−0.1

0.0

0.1

0.2

−0.1 0.0 0.1 0.2
resistance module score

se
ns

iti
vi

ty
 m

od
ul

e 
sc

or
e

p = 0.014

p < 1E-16

≥7 years relapse-free
relapse within 1 year

p = 0.011

published bulk data

single cell dataset

T. Candelli et al.

61

Leukemia (2022) 36:58 – 67



obtained by comparing prednisone-treated samples with matched
diagnosis samples. We considered two gene modules consisting
of 78 upregulated and 370 downregulated genes (Supplementary
Table 2) [26], respectively. Based on the expression of the two
gene modules, we classified individual cells as being sensitive or
resistant to therapy. The distribution of cells is a continuum from
apparent sensitivity to apparent resistance and the two modules
strongly anticorrelate with each other (Fig. 1e). This strengthens
the notion that these are not two independent signatures, but a
common set of intrinsic properties that are mutually exclusive.
Strikingly, labeling the cells according to future relapse occurrence
reveals a significant difference in both modules, implicating the
sensitivity and resistance markers in the process of relapse
development.
To further test the predictive capability of our data, we

examined the single-cell classification in individual patients
(Fig. 1f). Visual inspection indicates more resistant-predicted cells
(Fig. 1f, bottom-right quadrants) in patients who eventually
relapsed and more sensitive-predicted cells (upper-left quadrants)
in patients who remained relapse-free. For quantitative compar-
ison, we calculated the percentage of cells classified as sensitive/
resistant for each diagnostic sample. This yielded a strong
distinction between patients with and without relapse (Fig. 1g).
As a further control and for future ease of comparison with other
metrics, we used PCA to assign a singular value to each cell
representing the position along the sensitivity-resistance con-
tinuum (Fig. 1h, see Supplementary Fig. 3a–d for how well the first
PC embodies the signal from the two modules). As expected, PC
score is able to differentiate between long-term survivors and
relapsing patients. Treatment resistance is an obvious determinant
of outcome [31] and taken together, these analyses suggest that
such property might already be detectable at diagnosis, possibly
owing to a preexisting subpopulation of resistant cells.

In vitro prednisolone treatment enriches for cells classified as
resistant
The single-cell relapse prediction is based on the idea that gene
expression response to prednisone [26] reflects survival of
treatment-resistant cells (Fig. 1d). To further test this, untreated
leukemic cells from a diagnosis sample were exposed to
prednisolone (the liver-activated form of prednisone) in vitro
(Fig. 2a). As expected, treated cells are less viable (Fig. 2b),
consistent with prednisolone activity. Single-cell classification
shows that leukemic cells predicted to be resistant are present
in a lower proportion in the control sample and become highly
enriched after elimination of the sensitive cells by prednisolone
(Fig. 2c–e). This agrees with our interpretation that the previously
published prednisone response genes are indeed markers for
treatment sensitivity/resistance (Fig. 1d) and is consistent with the
two programs been present in the samples before any treatment.

Relapse prediction is robust across scRNA-seq technologies
and leukemic niches
Encouraged by our findings in a relatively small cohort of primary
MLL-r iALL BM biopsies, we repeated our analysis on PB samples.
This allowed us to greatly increase the number of patients

included in this study, and validation of these results in PB could
open more avenues for future clinical applications.
In addition, to further validate our findings, we evaluated our PB

results using two different techniques, SORT-seq and the industry
standard 10x Genomics.
As an initial pilot we used matched PB samples corresponding

to six of the BM samples analyzed above (Table 1, Fig. 3a), and
processed them with both SORT-seq and 10x Genomics. After
exclusion of healthy cells from the analysis (Supplementary
Fig. 4a), we again detected differences in the expression of the
sensitivity and resistance module between long-term survivors
and relapsing patients in both technologies (Fig. 3b, c), consistent
with previous results.
Relapse status classification of these six PB samples was also

consistent with earlier findings in BM (10x Genomics: Supplemen-
tary Fig. 4b, c, SORT-seq: together with additional samples in
Fig. 3d, e, Supplementary Fig. 4d, e) and did not depend on the
technology despite the difference in number of analyzed cells
(Fig. 3a). Taken together, these results confirm that our classifica-
tion signature is robust both across scRNA-seq technologies and
across leukemic niches (PB and BM), further validating the general
applicability of these findings.

Relapse prediction in an extended cohort of MLL-r iALL PB
samples
We performed SORT-seq on nine additional primary MLL-r iALL PB
samples taken at diagnosis (Supplementary Fig. 5a–c), resulting in
an extended cohort comprising of seven patients who remained
relapse-free for at least 7 years, and eight patients who relapsed
within the first 2 years from diagnosis. Focusing on this extended
cohort, we again asked whether the percentage of therapy-
resistant and -sensitive cells present at diagnosis could be
indicative of future relapse. Despite 2 out of the 15 samples
being misclassified (a long-term survivor and an early relapsing
patient), we observed a strong association between the propor-
tion of resistant cells at diagnosis and relapse occurrence (Fig. 3d,
e, Supplementary Fig. 5c). Taken together, these results show that
higher proportion of drug-resistant cells in PB blasts strongly
correlate with relapse occurrence in an extended cohort of 15
infants with MLL-rearranged ALL. Relapse prediction based on this
extended dataset is still overall superior to current risk stratifica-
tion (Fig. 3f). Interestingly, current metrics used for risk stratifica-
tion perform as well as this study when evaluating long-term
survivors (6/7 correct predictions in both cases) but fall
substantially short when evaluating patients who eventually
relapse (3/8 correct predictions, compared to 7/8 correct
predictions in this study). This difference highlights the need for
improved risk assessment, especially for patients that are most
at risk.

Characterization of relapse-initiating leukemic cells identified
by single-cell analysis
To further characterize sensitive/resistant cells, we first compared
them by differential expression analysis (PB: Supplementary
Table 3, BM: Supplementary Table 4) and then performed GO
enrichment on the resulting markers. As detected for the module

Fig. 1 Single-cell drug-sensitivity classification leads to relapse prediction. a Experiment design. b t-distributed stochastic neighbor
embedding (t-SNE) plot of cells labeled according to sample ID, with R indicating patients who suffered relapse and N indicating no relapse.
c Louvain clustering24 projected onto the t-SNE plot. d Previously published differential expression data obtained comparing naive and
prednisone-treated samples26 were applied as gene modules to classify cells for sensitivity (downregulated genes) and resistance
(upregulated genes). e Gene module scores (x- and y-axis) for each cell, with cells from patients who later developed relapse labeled gray and
cells from relapse-free patients labeled orange. f Gene module scores for cells from each patient individually. Cells in the upper-left quadrant
are predicted to be more sensitive and in the bottom-right more resistant to treatment. g Quantification of the fraction of cells from each
patient (from f) predicted to be sensitive (y-axis) or resistant (x-axis). h First principal component (PC) calculated using the union of sensitive/
resistance module genes for each cell. Bar height represents the mean score per patient. Error bars represent standard error of the mean.
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scores themselves (Figs. 1e and 3b, c), sensitivity and resistance
markers are also expressed as a continuum of characteristics
rather than distinct subtypes in both PB (Fig. 4a) and BM
(Supplementary Fig. 5d). GO enrichment indicates that cells with
predicted higher sensitivity to treatment are metabolically more
active (Fig. 4b). This resonates with our findings in BM samples,
which revealed that sensitive cells are actively proliferating
(Supplementary Fig. 5e, f). The anticorrelation of sensitivity and
resistance markers expression also emphasizes the converse trend:
resistant cells are associated with reduced metabolic (Fig. 4b) and
cell-cycle activity (Supplementary Fig. 5e, f) and appear to
represent more quiescent or dormant cells. Therefore, we asked
whether resistant cells would appear smaller by virtue of their
quiescence and lack of metabolic activity. This trend was
consistently observed in BM samples using FACS forward scatter
as a proxy for cell size (Supplementary Fig. 6a, b). However, further
size analysis by both microscopy and FACS on a patient-by-patient
basis—while highlighting a significant global trend in both PB and
BM when patients were aggregated according to future relapse
occurrence (Supplementary Fig. 6d–f, aggregate)—was not able to
stratify patients as accurately as our gene signature (Supplemen-
tary Fig. 6c–f).
While quiescence/activity seems to be an important dichotomy

characterizing the two ends of the resistance/sensitivity con-
tinuum, several interesting GO categories also appear differentially
enriched (Fig. 4b). Notably, categories comprising steroid hor-
mone response and apoptotic signaling pathway suggest intrinsic
differences in the regulation of these processes and might explain
the differential treatment sensitivity. In order to relate the

expression levels of these genes to the sensitivity/resistance
modules that associate with relapse occurrence, we correlated the
expression of all genes with said module scores and represented
the results as scatterplots (Fig. 4c).
We identified several groups of genes with high correlation to

the resistance module score, relating to glucocorticoid response,
drug resistance, and cell stemness. In the first group, we found
NR3C1, the gene encoding the glucocorticoid receptor, as well as
several of its downstream targets such as the KLF family of genes,
CDKN1A, and CREBBP [32–34]. This suggests that therapy-resistant
cells already exhibit at least a partially activated glucocorticoid
response before treatment and we speculate that this may blunt
the effects of subsequent prednisone administrations. We
identified several additional genes that may contribute to the
survival of resistant cells by mediating drug resistance. CTNNB1
[35] and MCL1 [36, 37] have both been previously implicated in
establishing drug resistance in MLL-driven leukemic cells and
additional death escape mechanisms might be provided by the
efflux transporter ABCA1 and antiapoptotic activity of CD55 [38].
A number of stemness markers such as CD44, EPC1, SET2D, and

SOCS2 seemed to correlate very well with our resistance module
score and may explain how these cells are able to avoid apoptosis
while maintaining replicative potential. In particular, EPC1 has
been reported to sustain the oncogenic potential of the leukemic
stem cells in MLL-rearranged acute myeloid leukemia [39] and
SET2D has been recently implicated in safeguarding the genomic
integrity of MLL-rearranged leukemias [40]. Expression of these
factors might provide an MLL-rearrangement-specific contribution
to the resilience of resistant cells.

Fig. 2 In vitro treatment enriches for cells classified as resistant. a Untreated leukemic cells from bone marrow diagnostic biopsy were
cultured with and without prednisolone. b Cell viability after treatment. c scRNA-seq-based sensitivity and resistance module scores of viable
cells from control and treated cultures as in Fig. 1f. d First PC score as in Fig. 1h. e Fractions of cells classified as sensitive/resistant in control
and treated samples.
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Taken together, these results point at a continuum of
characteristics present in treatment-naive samples as a determin-
ing factor of relapse occurrence, highlighting the role of
quiescence, unstimulated glucocorticoid response activation, and
apoptosis escape mechanisms.

Lower amounts of transcripts in relapse-associated cells
hampers classification by bulk mRNA expression analyses
Beyond indicating the cells from which relapse arises and the
potential for improving treatment of these vulnerable patients,
this study also reveals why single-cell analyses may in some cases
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outperform bulk mRNA approaches for patient classification. The
smaller cells associated with higher risk of disease relapse have
substantially lower numbers of transcripts (Supplementary Fig. 7a).
This fits with quiescence/dormancy as a means to escape
chemotherapy and means that bulk mRNA data will not
proportionately represent the relative abundance of such cells.
Indeed, applying the gene modules (Fig. 1) on previously
published bulk mRNA MLL-r iALL datasets [12, 41, 42] does not
result in a relapse/non-relapse distinction (Supplementary Fig. 7b).
Bulkifying the BM scRNA-seq data by complete pooling of all
transcripts yields a dataset that also does not discriminate well
(Supplementary Fig. 7c). However, pooling the scRNA-seq data
after downsampling so that each cell contributes an equal number
of transcripts does yield “bulk” data on which the modules
discriminate between patients who do and do not relapse
(Supplementary Fig. 7d).

DISCUSSION
To date, MLL-r iALL remains an aggressive and difficult-to-treat
childhood malignancy. Although induction therapy leads to
complete remissions in the vast majority of cases (~95%), two-
thirds of the patients experience disease relapse within 1 year
from diagnosis, while treatment is still ongoing [2, 3]. This
suggests that most of the blasts are responsive to treatment, while
a small subpopulation of therapy-refractory cells survives to
initiate relapse. In this study, we performed scRNA-seq on 15
diagnosis samples from patients with MLL-r iALL. We then used an
independently generated gene signature to predict future relapse

occurrence correctly in 13 out of the 15 cases, substantially
improving on the performance of current risk stratification. In
addition, we characterized the subpopulation of therapy-
refractory cells, finding them associated with small size, quiescent
nature, and heightened glucocorticoid response. Clinical outcome
seems to be largely correlated with the abundance of such
therapy-resistant leukemic cells. Their detection and further
characterization have tremendous potential to drastically improve
risk stratification and guide the development of new drugs
[11, 12].
Current risk stratification of MLL-r iALL involves categorizing

patients into either being medium risk or high risk, based on age
at diagnosis, white blood cell counts, and the in vivo response to
7 days of prednisone treatment. Although this division does lead
to significant differences in clinical outcome (Fig. 3f) [2, 3], it is still
often inaccurate, especially for patients that have a high risk of
relapse. A possible explanation for this may lie in some of the
criteria by which patients are currently being categorized. For
instance, one of the most important criteria for risk stratification is
COunt of BLAsts at day 8 (COBLA8), representing the count of
surviving blasts after 7 days of prednisone monotreatment.
Although this measurement is certainly associated with future
relapse occurrence, it is often inaccurate and possibly influenced
by confounding factors such as differences in initial WBC. In our
scRNA-seq-based relapse-prediction model, we improved upon
the predictive power of COBLA8 by analyzing the gene expression
patterns that characterize surviving cells and finding this signature
back in naive untreated diagnostic samples. This allowed us to
classify cells as either sensitive or resistant to treatment and to

Fig. 4 Cells associated with high relapse risk are quiescent and show activated prednisone response. a Expression heatmap of all
differentially expressed genes between cells classified as sensitive and resistant. cells (columns) are ordered by PC score, reflecting a gradient
from resistant to sensitive. b Gene Ontology categories enriched in the markers of sensitive and resistant cells. Gene ratio represents the
fraction of differentially expressed genes in each category. c Spearman correlation of all genes with either sensitivity (y-axis) or resistance (x-
axis) module score. Each plot is the same, but different categories of genes are highlighted in each plot.
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show that the relative proportion of resistant cells in a sample is
strongly correlated with relapse occurrence. The direct correlation
between expression of the resistance signature and treatment
outcome suggests that the signature represents general resistance
to chemotherapeutics rather than being specific to prednisone.
This is not surprising given the well-known association between
COBLA8 and relapse occurrence, but it does raise the question of
how a prednisone-associated gene expression pattern is able to
affect general therapy resistance.
In our analyses, we found that an activity-quiescence con-

tinuum is the most prominent feature separating resistant cells
from sensitive cells. Although unlikely to be directly associated
with prednisone, it reflects the well-documented resilience of
quiescent cells to chemotherapy and suggests that the resistance
signature might represent not only prednisone resistance but also
multiple therapy-escape mechanisms. This view is further
supported by several classes of genes we found enriched in
resistant cells. Detection of general mediators of drug resistance
and efflux transporters argues for broad therapy resistance, while
stemness markers typical of leukemic stem cells might help
escape drug-induced cell death and maintain replicative potential.
Taken together, these results argue for a model where prednisone
monotreatment selects for cells that are small, quiescent, and
generally resistant to chemotherapy, setting the stage for future
research to characterize them more in depth and decode their
therapy-resistance mechanisms.
There are several aspects and limitations of this study that will

need to be addressed in order to help translate this knowledge to
the clinic. scRNA-seq is not yet a routine lab technique and
application of bulk RNA-seq to detect the gene signature suffers
from quantification problems owing to the smaller RNA content of
resistant cells. Identification of an easily detectable hallmark could
help offset this problem and simplify the quantification of
resistant cells. However, investigation of clonality and mutation
analysis might be required to identify DNA-based hallmarks that
are not affected by the smaller size of resistant cells. Despite
considerable success, two patients in the cohort were misclassified
by our method. At this stage we cannot exclude that specific
mutations might act as epistatic factors, bypassing the drug
escape mechanisms and resulting in relapse development. Finally,
validation of this signature on vast numbers of patients—while
essential for inclusion in upcoming trials—is problematic both due
to the technique and to the rarity of the disease.
Taken together, these results demonstrate how single-cell

sequencing can be used to further our understanding of cancer
cell population dynamics and use them for accurate risk
assessment. Eventually, elimination of these therapy-resistant cells
during early phases of the treatment may well prevent relapse
occurrence in a substantial number of cases, leading to increased
survival.
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