Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liquid biopsy: an evolving paradigm for the biological characterisation of plasma cell disorders

A Correction to this article was published on 20 September 2021

This article has been updated

Abstract

Liquid biopsies—a source of circulating cell-free nucleic acids, proteins and extracellular vesicles—are currently being explored for the quantitative and qualitative characterisation of the tumour genome and as a mode of non-invasive therapeutic monitoring in cancer. Emerging data suggest that liquid biopsies might offer a potentially simple, non-invasive, repeatable strategy for diagnosis, prognostication and therapeutic decision making in a genetically heterogeneous disease like multiple myeloma (MM), with particular applicability in subsets of patients where conventional markers of disease burden may be less informative. In this review, we describe the emerging utility of the evaluation of circulating tumour DNA, extracellular RNA, cell-free proteins and metabolites and extracellular vesicles in MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison on information derived from conventional biopsy or liquid biopsy in a multi-focal disease like multiple myeloma (MM).

Similar content being viewed by others

Change history

References

  1. Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28:1122–8.

    Article  CAS  PubMed  Google Scholar 

  2. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364:1046–60.

    Article  CAS  PubMed  Google Scholar 

  3. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.

    Article  PubMed  CAS  Google Scholar 

  4. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mithraprabhu S, Khong T, Ramachandran M, Chow A, Klarica D, Mai L, et al. Circulating tumour DNA analysis demonstrates spatial mutational heterogeneity that coincides with disease relapse in myeloma. Leukemia. 2017;31:1695–705.

    Article  CAS  PubMed  Google Scholar 

  6. Rasche L, Chavan SS, Stephens OW, Patel PH, Tytarenko R, Ashby C, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017;8:268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weinhold N, Chavan SS, Rasche L, Stephens OW, Patel P, Tytarenko R, et al. Extensive regional intra-clonal heterogeneity in multiple myeloma—implications for diagnostics, risk stratification and targeted treatment. Blood. 2016;128:3278.

    Article  Google Scholar 

  8. Walker BA, Wardell CP, Melchor L, Brioli A, Johnson DC, Kaiser MF, et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia. 2014;28:384–90.

    Article  PubMed  Google Scholar 

  9. Mithraprabhu S, Sirdesai S, Chen M, Khong T, Spencer A. Circulating tumour DNA analysis for tumour genome characterisation and monitoring disease burden in extramedullary multiple myeloma. Int J Mol Sci. 2018;19:1858.

    Article  PubMed Central  CAS  Google Scholar 

  10. Mithraprabhu S, Morley R, Khong T, Kalff A, Bergin K, Hocking J, et al. Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients. Leukemia. 2019;33:2022–33.

    Article  CAS  PubMed  Google Scholar 

  11. Chen M, Mithraprabhu S, Ramachandran M, Choi K, Khong T, Spencer A. Utility of circulating cell-free RNA analysis for the characterization of global transcriptome profiles of multiple myeloma patients. Cancers. 2019;11:887.

    Article  CAS  PubMed Central  Google Scholar 

  12. Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil. 1948;142:241–3.

    CAS  PubMed  Google Scholar 

  13. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4:136ra168.

    Article  CAS  Google Scholar 

  14. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497:108–12.

    Article  CAS  PubMed  Google Scholar 

  15. Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4:162ra154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Heitzer E, Auer M, Hoffmann EM, Pichler M, Gasch C, Ulz P, et al. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer. 2013;133:346–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biancon G, Gimondi S, Vendramin A, Carniti C, Corradini P. Noninvasive molecular monitoring in multiple myeloma patients using cell-free tumor DNA: a pilot study. J Mol Diagn. 2018;20:859–70.

    Article  CAS  PubMed  Google Scholar 

  18. Manier S, Park J, Capelletti M, Bustoros M, Freeman SS, Ha G, et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018;9:1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo G, Raje NS, Seifer C, Kloeber J, Isenhart R, Ha G, et al. Genomic discovery and clonal tracking in multiple myeloma by cell-free DNA sequencing. Leukemia. 2018;32:1838–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deshpande S, Tytarenko RG, Wang Y, Boyle EM, Ashby C, Schinke CD, et al. Monitoring treatment response and disease progression in myeloma with circulating cell-free DNA. Eur J Haematol. 2021;106:230–40.

    Article  CAS  PubMed  Google Scholar 

  21. Manzoni M, Pompa A, Fabris S, Pelizzoni F, Ciceri G, Seia M, et al. Limits and applications of genomic analysis of circulating tumor DNA as a liquid biopsy in asymptomatic forms of multiple myeloma. Hemasphere. 2020;4:e402.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Heitzer E, Ulz P, Belic J, Gutschi S, Quehenberger F, Fischereder K, et al. Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med. 2013;5:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu C, Nezami Ranjbar MR, Wu Z, DiCarlo J, Wang Y. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller. BMC Genom. 2017;18:5.

    Article  CAS  Google Scholar 

  24. Xu C, Gu X, Padmanabhan R, Wu Z, Peng Q, DiCarlo J, et al. smCounter2: an accurate low-frequency variant caller for targeted sequencing data with unique molecular identifiers. Bioinformatics. 2019;35:1299–309.

    Article  CAS  PubMed  Google Scholar 

  25. Mithraprabhu S, Hocking J, Ramachandran M, Choi K, Klarica D, Khong T, et al. DNA-repair gene mutations are highly prevalent in circulating tumour DNA from multiple myeloma patients. Cancers. 2019;11:917.

    Article  CAS  PubMed Central  Google Scholar 

  26. Kis O, Kaedbey R, Chow S, Danesh A, Dowar M, Li T, et al. Circulating tumour DNA sequence analysis as an alternative to multiple myeloma bone marrow aspirates. Nat Commun. 2017;8:15086.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Oberle A, Brandt A, Voigtlaender M, Thiele B, Radloff J, Schulenkorf A, et al. Monitoring multiple myeloma by next-generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell-free myeloma DNA. Haematologica. 2017;102:1105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mazzotti C, Buisson L, Maheo S, Perrot A, Chretien ML, Leleu X, et al. Myeloma MRD by deep sequencing from circulating tumor DNA does not correlate with results obtained in the bone marrow. Blood Adv. 2018;2:2811–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rustad EH, Coward E, Skytoen ER, Misund K, Holien T, Standal T, et al. Monitoring multiple myeloma by quantification of recurrent mutations in serum. Haematologica. 2017;102:1266–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Q, Huang HJ, Ma J, Wang Y, Cao Z, Karlin-Neumann G, et al. RAS/RAF mutations in tumor samples and cell-free DNA from plasma and bone marrow aspirates in multiple myeloma patients. J Cancer. 2020;11:3543–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Long X, Xu Q, Lou Y, Li C, Gu J, Cai H, et al. The utility of non-invasive liquid biopsy for mutational analysis and minimal residual disease assessment in extramedullary multiple myeloma. Br J Haematol. 2020;189:e45–e48.

    Article  PubMed  Google Scholar 

  32. Vrabel D, Sedlarikova L, Besse L, Rihova L, Bezdekova R, Almasi M, et al. Dynamics of tumor-specific cfDNA in response to therapy in multiple myeloma patients. Eur J Haematol. 2020;104:190–7.

    Article  CAS  PubMed  Google Scholar 

  33. Mithraprabhu S, Spencer A. Circulating tumour DNA analysis in multiple myeloma. Oncotarget. 2017;8:90610–1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Underhill HR, Kitzman JO, Hellwig S, Welker NC, Daza R, Baker DN, et al. Fragment length of circulating tumor DNA. PLoS Genet. 2016;12:e1006162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018;10:eaat4921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Rawstron AC, Child JA, de Tute RM, Davies FE, Gregory WM, Bell SE, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol. 2013;31:2540–7.

    Article  PubMed  Google Scholar 

  37. Rawstron AC, Gregory WM, de Tute RM, Davies FE, Bell SE, Drayson MT, et al. Minimal residual disease in myeloma by flow cytometry: independent prediction of survival benefit per log reduction. Blood. 2015;125:1932–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mandel P, Metais P. Les acides nucleiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil. 1948;142:241–3.

    CAS  PubMed  Google Scholar 

  39. Mithraprabhu S, Spencer A. Liquid biopsy in multiple myeloma. https://doi.org/10.5772/intechopen.72652. IntechOpen, 2017.

  40. Hao M, Zang M, Wendlandt E, Xu Y, An G, Gong D, et al. Low serum miR-19a expression as a novel poor prognostic indicator in multiple myeloma. Int J Cancer. 2015;136:1835–44.

    Article  CAS  PubMed  Google Scholar 

  41. Qu X, Zhao M, Wu S, Yu W, Xu J, Xu J, et al. Circulating microRNA 483-5p as a novel biomarker for diagnosis survival prediction in multiple myeloma. Med Oncol. 2014;31:219.

    Article  PubMed  CAS  Google Scholar 

  42. Jones CI, Zabolotskaya MV, King AJ, Stewart HJ, Horne GA, Chevassut TJ, et al. Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma. Br J Cancer. 2012;107:1987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang JJ, Yu J, Li JY, Liu YT, Zhong RQ. Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma. Med Oncol. 2012;29:2402–8.

    Article  CAS  PubMed  Google Scholar 

  44. Navarro A, Diaz T, Tovar N, Pedrosa F, Tejero R, Cibeira MT, et al. A serum microRNA signature associated with complete remission and progression after autologous stem-cell transplantation in patients with multiple myeloma. Oncotarget. 2015;6:1874–83.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Besse L, Sedlarikova L, Kryukov F, Nekvindova J, Radova L, Slaby O, et al. Circulating serum MicroRNA-130a as a novel putative marker of extramedullary myeloma. PLoS One. 2015;10:e0137294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yoshizawa S, Ohyashiki JH, Ohyashiki M, Umezu T, Suzuki K, Inagaki A, et al. Downregulated plasma miR-92a levels have clinical impact on multiple myeloma and related disorders. Blood Cancer J. 2012;2:e53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kubiczkova L, Kryukov F, Slaby O, Dementyeva E, Jarkovsky J, Nekvindova J, et al. Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica. 2014;99:511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jung SH, Lee SE, Lee M, Kim SH, Yim SH, Kim TW, et al. Circulating microRNA expressions can predict the outcome of lenalidomide plus low-dose dexamethasone treatment in patients with refractory/relapsed multiple myeloma. Haematologica. 2017;102:e459.

    Article  CAS  Google Scholar 

  49. Gupta N, Kumar R, Seth T, Garg B, Sati HC, Sharma A. Clinical significance of circulatory microRNA-203 in serum as novel potential diagnostic marker for multiple myeloma. J Cancer Res Clin Oncol. 2019;145:1601–11.

    Article  CAS  PubMed  Google Scholar 

  50. Zhong L, Jin X, Xu Z, Zeng M, Chen D, He Y, et al. Circulating miR-451a levels as a potential biomarker to predict the prognosis of patients with multiple myeloma. Oncol Lett. 2020;20:263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rocci A, Hofmeister CC, Geyer S, Stiff A, Gambella M, Cascione L, et al. Circulating miRNA markers show promise as new prognosticators for multiple myeloma. Leukemia. 2014;28:1922–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hao M, Zang M, Zhao L, Deng S, Xu Y, Qi F, et al. Serum high expression of miR-214 and miR-135b as novel predictor for myeloma bone disease development and prognosis. Oncotarget. 2016;7:19589–600.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhu B, Chen H, Zhang X, Pan Y, Jing R, Shen L, et al. Serum miR-30d as a novel biomarker for multiple myeloma and its antitumor role in U266 cells through the targeting of the MTDH/PI3K/Akt signaling pathway. Int J Oncol. 2018;53:2131–44.

    CAS  PubMed  Google Scholar 

  54. Fiehn O. Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–71.

    Article  CAS  PubMed  Google Scholar 

  55. Ho M, Bianchi G, Anderson KC. Proteomics-inspired precision medicine for treating and understanding multiple myeloma. Expert Rev Precis Me. 2020;5:67–85.

    Google Scholar 

  56. Peng B, Li H, Peng XX. Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein Cell. 2015;6:628–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marshall DD, Powers R. Beyond the paradigm: combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog Nucl Magn Reson Spectrosc. 2017;100:1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sobsey CA, Ibrahim S, Richard VR, Gaspar V, Mitsa G, Lacasse V, et al. Targeted and untargeted proteomics approaches in biomarker development. Proteomics. 2020;20:e1900029.

    Article  PubMed  CAS  Google Scholar 

  59. Janker L, Mayer RL, Bileck A, Kreutz D, Mader JC, Utpatel K, et al. Metabolic, anti-apoptotic and immune evasion strategies of primary human myeloma cells indicate adaptations to hypoxia. Mol Cell Proteom. 2019;18:936–53.

    Article  CAS  Google Scholar 

  60. Ludwig C, Williams DS, Bartlett DB, Essex SJ, McNee G, Allwood JW, et al. Alterations in bone marrow metabolism are an early and consistent feature during the development of MGUS and multiple myeloma. Blood. Cancer J. 2015;5:e359.

    CAS  Google Scholar 

  61. Masarwi M, DeSchiffart A, Ham J, Reagan MR. Multiple myeloma and fatty acid metabolism. JBMR. 2019;3:e10173.

    Google Scholar 

  62. Puchades-Carrasco L, Lecumberri R, Martinez-Lopez J, Lahuerta JJ, Mateos MV, Prosper F, et al. Multiple myeloma patients have a specific serum metabolomic profile that changes after achieving complete remission. Clin Cancer Res. 2013;19:4770–9.

    Article  CAS  PubMed  Google Scholar 

  63. Deulofeu M, Kolarova L, Salvado V, Maria Pena-Mendez E, Almasi M, Stork M, et al. Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma. Sci Rep. 2019;9:7975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Chanukuppa V, More TH, Taunk K, Taware R, Chatterjee IA, Sharma S, et al. Serum metabolomic alterations in multiple myeloma revealed by targeted and untargeted metabolomics approaches: a pilot study. Rsc Adv. 2019;9:29522–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Steiner N, Muller U, Hajek R, Sevcikova S, Borjan B, Johrer K, et al. The metabolomic plasma profile of myeloma patients is considerably different from healthy subjects and reveals potential new therapeutic targets. PLoS One. 2018;13:e0202045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Veskovski L, Andersson PO, Turesson I, Malmodin D, Pedersen A, Mellqvist UH. Serum metabolomic profiling correlated with ISS and clinical outcome for multiple myeloma patients treated with high dose melphalan and autologous stem cell transplantation. Blood. 2021;97:79–88.

    CAS  Google Scholar 

  67. Fei F, Ma T, Zhou X, Zheng M, Cao B, Li J. Metabolic markers for diagnosis and risk-prediction of multiple myeloma. Life Sci. 2020;265:118852.

    Article  PubMed  CAS  Google Scholar 

  68. Gonsalves WI, Ramakrishnan V, Hitosugi T, Ghosh T, Jevremovic D, Dutta T, et al. Glutamine-derived 2-hydroxyglutarate is associated with disease progression in plasma cell malignancies. JCI Insight. 2018;3:e94543.

    Article  PubMed Central  Google Scholar 

  69. Wang QT, Li YZ, Liang YF, Hu CJ, Zhai YH, Zhao GF, et al. Construction of a multiple myeloma diagnostic model by magnetic bead-based MALDI-TOF mass spectrometry of serum and pattern recognition software. Anat Rec. 2009;292:604–10.

    Article  Google Scholar 

  70. He A, Bai J, Huang C, Yang J, Zhang W, Wang J, et al. Detection of serum tumor markers in multiple myeloma using the CLINPROT system. Int J Hematol. 2012;95:668–74.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang HT, Tian EB, Chen YL, Deng HT, Wang QT. Proteomic analysis for finding serum pathogenic factors and potential biomarkers in multiple myeloma. Chin Med J. 2015;128:1108–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Barcelo F, Gomila R, de Paul I, Gili X, Segura J, Perez-Montana A, et al. MALDI-TOF analysis of blood serum proteome can predict the presence of monoclonal gammopathy of undetermined significance. PLoS One. 2018;13:e0201793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ma TZ, Piao Z, Jin SY, Kwak YG. Differential expression of serum proteins in multiple myeloma. Exp Ther Med. 2019;17:649–56.

    CAS  PubMed  Google Scholar 

  74. Bhattacharyya S, Epstein J, Suva LJ. Biomarkers that discriminate multiple myeloma patients with or without skeletal involvement detected using SELDI-TOF mass spectrometry and statistical and machine learning tools. Dis Markers. 2006;22:245–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dowling P, Hayes C, Ting KR, Hameed A, Meiller J, Mitsiades C, et al. Identification of proteins found to be significantly altered when comparing the serum proteome from Multiple Myeloma patients with varying degrees of bone disease. Bmc Genom. 2014;15:904.

    Article  Google Scholar 

  76. Sasser AK, Casneuf T, Amaratunga D, Tryputsen V, Kumar SK, Rajkurnar V, et al. Development of a serum biomarker panel that predicts imminent risk of multiple myeloma (MM) progression from premalignancy. Blood. 2013;122:3115.

    Article  Google Scholar 

  77. Zingone A, Wang W, Corrigan-Cummins M, Wu SP, Plyler R, Korde N, et al. Altered cytokine and chemokine profiles in multiple myeloma and its precursor disease. Cytokine. 2014;69:294–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mailankody S, Devlin SM, Korde N, Lendvai N, Lesokhin A, Landau H, et al. Proteomic profiling in plasma cell disorders: a feasibility study. Leuk Lymphoma. 2017;58:1757–9.

    Article  PubMed  Google Scholar 

  79. Bai J, Yang Y, Wang J, Zhang L, Wang F, He A. Variability of serum novel serum peptide biomarkers correlates with the disease states of multiple myeloma. Clin Proteom. 2019;16:17.

    Article  CAS  Google Scholar 

  80. Hsieh FY, Tengstrand E, Pekol TM, Guerciolini R, Miwa G. Elucidation of potential bortezomib response markers in mutliple myeloma patients. J Pharm Biomed. 2009;49:115–22.

    Article  CAS  Google Scholar 

  81. Rajpal R, Dowling P, Meiller J, Clarke C, Murphy WG, O’Connor R, et al. A novel panel of protein biomarkers for predicting response to thalidomide-based therapy in newly diagnosed multiple myeloma patients. Proteomics. 2011;11:1391–402.

    Article  CAS  PubMed  Google Scholar 

  82. Luczak M, Kubicki T, Rzetelska Z, Szczepaniak T, Przybylowicz-Chalecka A, Ratajczak B, et al. Comparative proteomic profiling of sera from patients with refractory multiple myeloma reveals potential biomarkers predicting response to bortezomib-based therapy. Pol Arch Intern Med. 2017;127:392–400.

    PubMed  Google Scholar 

  83. Ting KR, Henry M, Meiller J, Larkin A, Clynes M, Meleady P, et al. Novel panel of protein biomarkers to predict response to bortezomib-containing induction regimens in multiple myeloma patients. BBA Clin. 2017;8:28–34.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Moloudizargari M, Abdollahi M, Asghari MH, Zimta AA, Neagoe IB, Nabavi SM. The emerging role of exosomes in multiple myeloma. Blood Rev. 2019;38:100595.

    Article  CAS  PubMed  Google Scholar 

  85. Reale A, Carmichael I, Xu R, Mithraprabhu S, Khong T, Chen M, et al. Human myeloma cell- and plasma-derived extracellular vesicles contribute to functional regulation of stromal cells. Proteomics. 2021;Feb 12:e2000119.

  86. Manier S, Liu CJ, Avet-Loiseau H, Park J, Shi J, Campigotto F, et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood. 2017;129:2429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sedlarikova L, Bollova B, Radova L, Brozova L, Jarkovsky J, Almasi M, et al. Circulating exosomal long noncoding RNA PRINS—first findings in monoclonal gammopathies. Hematol Oncol. 2018;36:786–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu H, Han H, Song S, Yi N, Qian C, Qiu Y, et al. Exosome-transmitted PSMA3 and PSMA3-AS1 promote proteasome inhibitor resistance in multiple myeloma. Clin Cancer Res. 2019;25:1923–35.

    Article  CAS  PubMed  Google Scholar 

  89. Harshman SW, Canella A, Ciarlariello PD, Agarwal K, Branson OE, Rocci A, et al. Proteomic characterization of circulating extracellular vesicles identifies novel serum myeloma associated markers. J Proteom. 2016;136:89–98.

    Article  CAS  Google Scholar 

  90. Kvorning SL, Nielsen MC, Andersen NF, Hokland M, Andersen MN, Moller HJ. Circulating extracellular vesicle-associated CD163 and CD206 in multiple myeloma. Eur J Haematol. 2020;104:409–19.

    Article  CAS  PubMed  Google Scholar 

  91. Reale A, Khong T, Xu R, Chen M, Mithraprabhu S, Bingham N, et al. Human plasma extracellular vesicle isolation and proteomic characterization for the optimization of liquid biopsy in multiple myeloma. In: Posch A (ed). Proteomic profiling: methods and protocols. Springer US: New York, NY, 2021;2261:151–91.

  92. Krishnan SR, Luk F, Brown RD, Suen H, Kwan Y, Bebawy M. Isolation of human CD138(+) microparticles from the plasma of patients with multiple myeloma. Neoplasia. 2016;18:25–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Krishnan SR, De Rubis G, Suen H, Joshua D, Kwan YL, Bebawy M. A liquid biopsy to detect multidrug resistance and disease burden in multiple myeloma. Blood Cancer J. 2020;10:37.

    Article  Google Scholar 

  94. Caivano A, Laurenzana I, De Luca L, La Rocca F, Simeon V, Trino S, et al. High serum levels of extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders. Tumour Biol. 2015;36:9739–52.

    Article  CAS  PubMed  Google Scholar 

  95. Krishnan A, Adhikarla V, Poku EK, Palmer J, Chaudhry A, Biglang-Awa VE, et al. Identifying CD38+ cells in patients with multiple myeloma: first-in-human imaging using copper-64-labeled daratumumab. Blood Adv. 2020;4:5194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bergin K, Moore E, McQuilten Z, Wood E, Augustson B, Blacklock H, et al. Design and development of the Australian and New Zealand (ANZ) myeloma and related diseases registry. BMC Med Res Methodol. 2016;16:151.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sridurga Mithraprabhu or Andrew Spencer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mithraprabhu, S., Chen, M., Savvidou, I. et al. Liquid biopsy: an evolving paradigm for the biological characterisation of plasma cell disorders. Leukemia 35, 2771–2783 (2021). https://doi.org/10.1038/s41375-021-01339-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01339-6

This article is cited by

Search

Quick links