Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acute lymphoblastic leukemia

Activated interleukin-7 receptor signaling drives B-cell acute lymphoblastic leukemia in mice


Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk subtype of B-ALL often associated with genetic variants that alter cytokine receptor signaling, including mutations in the interleukin-7 receptor (IL7R). To investigate whether IL7R variants are leukemia-initiating, we built mouse models expressing activated Il7r (aIL7R). B-cell intrinsic aIL7R mice developed spontaneous B-ALL, demonstrating sufficiency of Il7r activating mutations in leukemogenesis. Concomitant introduction of a knock-out allele in the associated adapter protein Lnk (encoded by Sh2b3) or a dominant-negative variant of the transcription factor Ikaros (Ikzf1) increased disease penetrance. The resulting murine leukemias displayed monoclonality and recurrent somatic Kras mutations and efficiently engrafted into immunocompetent mice. Phosphoproteomic analyses of aIL7R leukemic cells revealed constitutive Stat5 signaling and B cell receptor (BCR)-like signaling despite the absence of surface pre-BCR. Finally, in vitro treatment of aIL7R leukemic B-cells with Jak, mTOR, or Syk inhibitors blocked growth, confirming that each pathway is active in this mouse model of IL7R-driven B-ALL.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: B-intrinsic aIL7R and heterozygous loss of Sh2b3 or Ikaros rapidly promote B cell precursor leukemias.
Fig. 2: aIL7R leukemias are transplantable into immunocompetent hosts and acquire mutations in clinically relevant genes.
Fig. 3: B-lineage aIL7R cooperates with heterozygous loss of Sh2b3 or Ikzf1 to drive a specific expansion of late pro B cells.
Fig. 4: aIL7R with Sh2b3 loss promotes enhanced survival in normal and leukemic B cell progenitors.
Fig. 5: aIL7R-expressing B cell progenitors are less sensitive to IL-7 depletion in vivo.
Fig. 6: aIL7R leukemias are responsive to rapamycin therapy in vivo.
Fig. 7: IL-7R-mutant leukemias display activation of a “BCR-like” signaling program.

Data availability

The mapped reads for the whole-exome sequencing have been deposited in the Sequence Read Archive database (BioProject ID: PRJNA735253). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [63] partner repository with the dataset identifiers PXD026438 and PXD026322.


  1. 1.

    Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome-like acute lymphoblastic leukemia. Blood. 2017;130:2064–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines J, Peters S, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125–34.

    Article  CAS  Google Scholar 

  3. 3.

    Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4.

    Roberts KG, Morin RD, Zhang JH, Hirst M, Zhao YJ, Su XP, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22:153–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Mullighan CG. The genomic landscape of acute lymphoblastic leukemia in children and young adults. Hematology-Am Soc Hematol Educ Program. 2014;2014:174–80.

  6. 6.

    Zenatti PP, Ribeiro D, Li WQ, Zuurbier L, Silva MC, Paganin M, et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet. 2011;43:932–U931.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Shochat C, Tal N, Bandapalli OR, Palmi C, Ganmore I, Kronnie GT, et al. Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med. 2011;208:901–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Clark MR, Mandal M, Ochiai K, Singh H. Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat Rev Immunol. 2014;14:69–80.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Corfe SA, Paige CJ. The many roles of IL-7 in B cell development; Mediator of survival, proliferation and differentiation. Semin Immunol. 2012;24:198–208.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Barata JT, Durum SK, Seddon B. Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol. 2019;20:1584–93.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Ochiai K, Maienschein-Cline M, Mandal M, Triggs JR, Bertolino E, Sciammas R, et al. A self-reinforcing regulatory network triggered by limiting IL-7 activates pre-BCR signaling and differentiation. Nat Immunol. 2012;13:300–U124.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Buchner M, Swaminathan S, Chen ZS, Muschen M. Mechanisms of pre-B-cell receptor checkpoint control and its oncogenic subversion in acute lymphoblastic leukemia. Immunol Rev. 2015;263:192–209.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Treanor LM, Zhou S, Janke L, Churchman ML, Ma ZJ, Lu TH, et al. Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J Exp Med. 2014;211:701–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Yokoyama K, Yokoyama N, Izawa K, Kotani A, Harashima A, Hozumi K, et al. In vivo leukemogenic potential of an interleukin 7 receptor alpha chain mutant in hematopoietic stem and progenitor cells. Blood. 2013;122:4259–63.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Takaki S, Sauer K, Iritani BM, Chien S, Ebihara Y, Tsuji K, et al. Control of B cell production by the adaptor protein Lnk: definition of a conserved family of signal-modulating proteins. Immunity. 2000;13:599–609.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Cheng Y, Chikwava K, Wu C, Zhang HB, Bhagat A, Pei DH, et al. LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors. J Clin Investig. 2016;126:1267–81.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity. 1996;5:537–49.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, et al. The IKAROS gene is required for the development of all lymphoid lineages. Cell. 1994;79:143–56.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Yoshida T, Ng SYM, Zuniga-Pflucker JC, Georgopoulos K. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol. 2006;7:382–91.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Joshi I, Yoshida T, Jena N, Qi XQ, Zhang JW, Van Etten RA, et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat Immunol. 2014;15:294–304.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Schwickert TA, Tagoh H, Gultekin S, Dakic A, Axelsson E, Minnich M, et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat Immunol. 2014;15:283–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Katerndahl CDS, Heltemes-Harris LM, Willette MJL, Henzler CM, Frietze S, Yang RD. et al. Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. Nat Immunol. 2017;18:694

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Ge Z, Gu Y, Xiao LC, Han Q, Li JY, Chen BA, et al. Co-existence of IL7R high and SH2B3 low expression distinguishes a novel high-risk acute lymphoblastic leukemia with Ikaros dysfunction. Oncotarget. 2016;7:46014–27.

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Allenspach E, Shubin N, Cerosaletti K, Mikacenic C, Gorman J, MacQuivey M, et al. The autoimmune risk R262W variant of the adaptor SH2B3 improves survival in sepsis. J Immunol [In preparation/revision] 2020.

  25. 25.

    Mullighan CG, Su XP, Zhang JH, Radtke I, Phillips LAA, Miller CB, et al. Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia. N Engl J Med. 2009;360:470–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Meffre E, Fougereau M, Argenson JN, Aubaniac JM, Schiff C. Cell surface expression of surrogate light chain (Psi L) in the absence of mu on human pro-B cell lines and normal pro-B cells. Eur J Immunol. 1996;26:2172–80. Sep

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Lemmers B, Arnoulet C, Fossat C, Chambost H, Sainty D, Gabert J, et al. Fine characterization of childhood and adult acute lymphoblastic leukemia (ALL) by a proB and preB surrogate light chain-specific mAb and a proposal for a new B cell ALL classification. Leukemia. 2000;14:2103–11.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Lemmers B, Gauthier L, Guelpa-Fonlupt V, Fougereau M, Schiff C. The human (Psi L+mu(-)) proB complex: Cell surface expression and biochemical structure of a putative transducing receptor. Blood. 1999;93:4336–46.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Goldberg L, Gough SM, Lee F, Dang C, Walker RL, Zhu YLJ, et al. Somatic mutations in murine models of leukemia and lymphoma: Disease specificity and clinical relevance. Genes Chromosomes Cancer. 2017;56:472–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Gough SM, Goldberg L, Pineda M, Walker RL, Zhu YJ, Bilke S, et al. Progenitor B-1 B-cell acute lymphoblastic leukemia is associated with collaborative mutations in 3 critical pathways. Blood Adv. 2017;1:1749–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Lu LW, Chaudhury P, Osmond DG. Regulation of cell survival during B lymphopoiesis: Apoptosis and Bcl-2/Bax content of precursor B cells in bone marrow of mice with altered expression of IL-7 and recombinase-activating gene-2. J Immunol. 1999;162:1931–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Malin S, McManus S, Cobaleda C, Novatchkova M, Delogu A, Bouillet P, et al. Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol. 2010;11:171–U197.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Grillot DAM, Merino R, Pena JC, Fanslow WC, Finkelman FD, Thompson CB, et al. bcl-x exhibits regulated expression during B cell development and activation and modulates lymphocyte survival in transgenic mice. J Exp Med. 1996;183:381–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Maude SL, Tasian SK, Vincent T, Hall JW, Sheen C, Roberts KG, et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2012;120:3510–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Tasian SK, Doral MY, Borowitz MJ, Wood BL, Chen IM, Harvey RC, et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood. 2012;120:833–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Tasian SK, Teachey DT, Li Y, Shen F, Harvey RC, Chen IM, et al. Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2017;129:177–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Hurtz C, Wertheim GB, Loftus JP, Blumenthal D, Lehman A, Li Y, et al. Oncogene-independent BCR-like signaling adaptation confers drug resistance in Ph-like ALL. J Clin Investig. 2020;130:3637–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Cramer SD, Hixon JA, Andrews C, Porter RJ, Rodrigues GOL, Wu XL, et al. Mutant IL-7R alpha and mutant NRas are sufficient to induce murine T cell acute lymphoblastic leukemia. Leukemia. 2018;32:1795–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Geron I, Savino AMS, Tal N, Brown J, Turati V, James C, et al. An instructive role for IL7RA in the development of human B-cell precursor leukemia. BioRxiv; 2020.

  40. 40.

    Damia G, Komschlies KL, Faltynek CR, Ruscetti FW, Wiltrout RH. Administration of recombinant human interleukin-7 alters the frequency and number of myeloid progenitor cells in the bone-marrow and spleen of mice. Blood. 1992;79:1121–9.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Komschlies KL, Gregorio TA, Gruys ME, Back TC, Faltynek CR, Wiltrout RH. Administration of recombinant human IL-7 to mice alters the composition of b-lineage cells and t-cell subsets, enhances t-cell function, and induces regression of established metastases. J Immunol. 1994;152:5776–84.

    CAS  PubMed  Google Scholar 

  42. 42.

    Morrissey PJ, Conlon P, Braddy S, Williams DE, Namen AE, Mochizuki DY. Administration of IL-7 to mice with cyclophosphamide-induced lymphopenia accelerates lymphocyte repopulation. J Immunol. 1991;146:1547–52.

    CAS  PubMed  Google Scholar 

  43. 43.

    Digel W, Schmid M, Heil G, Conrad P, Gillis S, Porzsolt F. Human interleukin-7 induces proliferation of neoplastic-cells from chronic lymphocytic-leukemia and acute leukemias. Blood. 1991;78:753–9.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Martin-Lorenzo A, Hauer J, Vicente-Duenas C, Auer F, Gonzalez-Herrero I, Garcia-Ramirez I, et al. Infection exposure is a causal factor in B-cell precursor acute lymphoblastic leukemia as a result of Pax5-inherited susceptibility. Cancer Discov. 2015;5:1328–43.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Nakayama J, Yamamoto M, Hayashi K, Satoh H, Bundo K, Kubo M, et al. BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. Blood. 2009;113:1483–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Appelmann I, Rillahan CD, de Stanchina E, Carbonetti G, Chen C, Lowe SW, et al. Janus kinase inhibition by ruxolitinib extends dasatinib- and dexamethasone-induced remissions in a mouse model of Ph plus ALL. Blood. 2015;125:1444–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Abdelrasoul H, Vadakumchery A, Werner M, Lenk L, Khadour A, Young M, et al. Synergism between IL7R and CXCR4 drives BCR-ABL induced transformation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Nature. Communications. 2020;11:12.

    Google Scholar 

  48. 48.

    Mocsai A, Ruland J, Tybulewicz VLJ. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010;10:387–402.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Loftus JP, Yahiaoui A, Brown PA, Niswander LM, Bagashev A, Wang M, et al. Combinatorial efficacy of entospletinib and chemotherapy in patient-derived xenograft models of infant acute lymphoblastic leukemia. Haematologica. 2021;106:1067–78.

  50. 50.

    Hobeika E, Thiemann S, Storch B, Jumaa H, Nielsen PJ, Pelanda R, et al. Testing gene function early in the B cell lineage in mb1-cre mice. Proc Natl Acad Sci USA. 2006;103:13789–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Rickert RC, Roes J, Rajewsky K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 1997;25:1317–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Becker-Herman S, Meyer-Bahlburg A, Schwartz MA, Jackson SW, Hudkins KL, Liu CH, et al. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. J Exp Med. 2011;208:2033–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Wray-Dutra MN, Chawla R, Thomas KR, Seymour BJ, Arkatkar T, Sommer KM, et al. Activated CARD11 accelerates germinal center kinetics, promoting mTORC1 and terminal differentiation. J Exp Med. 2018;215:2445–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Bandaranayake AD, Correnti C, Ryu BY, Brault M, Strong RK, Rawlings DJ. Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors. Nucleic Acids Res. 2011;39:e143.

  55. 55.

    Schwartz MA, Kolhatkar NS, Thouvenel C, Khim S, Rawlings DJ. CD4(+) T cells and CD40 participate in selection and homeostasis of peripheral b cells. J Immunol. 2014;193:3492–502.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Dunn T, Berry G, Emig-Agius D, Jiang Y, Lei S, Iyer A, et al. Pisces: an accurate and versatile variant caller for somatic and germline next-generation sequencing data. Bioinformatics. 2019;35:1579–81.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Wang K, Li MY, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:7.

    Google Scholar 

  59. 59.

    Hale M, Lee B, Honaker Y, Leung WH, Grier AE, Jacobs HM, et al. Homology-directed recombination for enhanced engineering of chimeric antigen receptor T Cells. Mol Ther Methods Clin Dev. 2017;4:192–203.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Eng JK, Jahan TA, Hoopmann MR. Comet: An open-source MS/MS sequence database search tool. Proteomics. 2013;13:22–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Deutsch EW, Mendoza L, Shteynberg D, Farrah T, Lam H, Tasman N, et al. A guided tour of the trans-proteomic pipeline. Proteomics. 2010;10:1150–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Perez-Riverol Y, Csordas A, Bai JW, Bernal-Llinares M, Hewapathirana S, Kundu DJ. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references


The authors would like to thank Karen Sommer and Andrea Repele for laboratory management, Jennifer Haddock for administrative support, Beth Lawlor for helpful comments and critical review of the manuscript, the University of Washington Histology and Imaging Core, and the Northwest Genomics Center at the University of Washington. This work was supported by the National Institutes of Health under award numbers: TL1-TR000422 (to KRT), DP3-DK111802 (to DJR), NCI-R01CA201135-A1 (to RGJ), 1K08CA184418 (to SKT), 1U01CA232486 (to SKT), 1U01CA243072 (SKT), 1K08DK114568-01 (to EJA), Department of Defense Translational Team Science Award CA180683P1 (to SKT), the V Foundation for Cancer Research (to SKT), the Seattle Children’s Research Institute (SCRI) Center for Immunity and Immunotherapies (CIIT) Program for Cell and Gene Therapy (PCGT), the Children’s Guild Association Endowed Chair in Pediatric Immunology (to DJR), and the Hansen Investigator in Pediatric Innovation Endowment (to DJR). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information




KRT, EJA, and NDC: designed and performed experiments, analyzed data, and wrote and/or edited the manuscript. KRT and EJA designed the aIL7R murine model. MNW, JPL, SK, and AZ: designed, performed, and interpreted the experiments. AET and HDL analyzed data. KG provided the Ikzf1 flox mice and edited the manuscript. SKT provided the PDX models, interpreted data, and edited the manuscript. RGJ and DJR conceived of and supervised the study, interpreted data, and edited the manuscript.

Corresponding authors

Correspondence to Richard G. James or David J. Rawlings.

Ethics declarations

Competing interests

SKT receives research funding from Incyte Corporation, Gilead Sciences, and MacroGenics, Inc. for unrelated studies and is a member of the scientific advisory board of Aleta Biotherapeutics for unrelated studies.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomas, K.R., Allenspach, E.J., Camp, N.D. et al. Activated interleukin-7 receptor signaling drives B-cell acute lymphoblastic leukemia in mice. Leukemia (2021).

Download citation


Quick links