Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Chronic myeloproliferative neoplasms

Are polycythemia vera, essential thrombocytosis, and primary myelofibrosis 1, 2, or 3 diseases?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The hematopoietic stem cell hierarchy.
Fig. 2: HSC gene expression differs between PV and ET.
Fig. 3: The clonal behavior of ET, PV, and PMF HSCs.

References

  1. Weber FP. Polycythaemia, erythrocytosis and erythraemia. Q. J. Med.1908;2:85–134.

    Google Scholar 

  2. Dameshek W. Physiopathology and course of polycythemia vera as related to therapy. JAMA. 1950;142:790–7.

    Article  CAS  Google Scholar 

  3. Spivak JL. Polycythemia vera: myths, mechanisms, and management. Blood 2002;100:4272–90.

    Article  CAS  Google Scholar 

  4. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  Google Scholar 

  5. Silver RT, Krichevsky S. Distinguishing essential thrombocythemia JAK2V617F from polycythemia vera: limitations of erythrocyte values. Haematologica . 2019;104:2200–5.

    Article  CAS  Google Scholar 

  6. Berlin NI. Diagnosis and classification of the polycythemias. Semin. Hematol.1975;12:339–51.

    CAS  PubMed  Google Scholar 

  7. Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 2014;123:1544–51.

    Article  CAS  Google Scholar 

  8. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007;1:685–97.

    Article  CAS  Google Scholar 

  9. Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A, et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 2013;502:232–6.

    Article  CAS  Google Scholar 

  10. Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 2013;154:1112–26.

    Article  CAS  Google Scholar 

  11. Moliterno AR, Williams DM, Rogers O, Spivak JL. Molecular mimicry in the chronic myeloproliferative disorders: reciprocity between quantitative JAK2 V617F and Mpl expression. Blood 2006;108:3913–5.

    Article  CAS  Google Scholar 

  12. Passamonti F, Giorgino T, Mora B, Guglielmelli P, Rumi E, Maffioli M, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia 2017;31:2726–31.

    Article  CAS  Google Scholar 

  13. Karantanos T, Chaturvedi S, Braunstein EM, Spivak J, Resar L, Karanika S, et al. Sex determines the presentation and outcomes in MPN and is related to sex-specific differences in the mutational burden. Blood Adv. 2020;4:2567–76.

    Article  Google Scholar 

  14. Kralovics R, Guan Y, Prchal JT. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp. Hematol.2002;30:229–36.

    Article  CAS  Google Scholar 

  15. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL. et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat. Genet.2009;41:446–9.

    Article  CAS  Google Scholar 

  16. Rumi E, Passamonti F, Della Porta MG, Elena C, Arcaini L, Vanelli L. et al. Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. J. Clin. Oncol.2007;25:5630–5.

    Article  Google Scholar 

  17. Nielsen C, Bojesen SE, Nordestgaard BG, Kofoed KF, Birgens HS. JAK2V617F somatic mutation in the general population: myeloproliferative neoplasm development and progression rate. Haematologica 2014;99:1448–55.

    Article  CAS  Google Scholar 

  18. Mansier O, Luque PD, Ianotto JC, Le BY, Chauveau A, Boyer F. et al. Clinical and biological characterization of MPN patients harboring two driver mutations, a French intergroup of myeloproliferative neoplasms (FIM) study. Am. J. Hematol.2018;93:E84–E6.

    Article  Google Scholar 

  19. Moliterno AR, Williams DM, Rogers O, Isaacs MA, Spivak JL. Phenotypic variability within the JAK2 V617F-positive MPD: roles of progenitor cell and neutrophil allele burdens. Exp. Hematol.2008;36:1480–6.

    Article  CAS  Google Scholar 

  20. Mora B, Siracusa C, Rumi E, Maffioli M, Casetti IC, Barraco D.et al. Platelet count predicts driver mutations’ co-occurrence in low JAK2 mutated essential thrombocythemia and myelofibrosis. Leukemia. 2020.

  21. Spivak JL, Merchant A, Williams DM, Rogers O, Zhao W, Duffield A. et al. Thrombopoietin is required for full phenotype expression in a JAK2V617F transgenic mouse model of polycythemia vera. PLoS ONE. 2020;15:e0232801.

    Article  CAS  Google Scholar 

  22. Maslah N, Soret J, Dosquet C, Vercellino L, Belkhodja C, Schlageter MH, et al. Masked polycythemia vera: analysis of a single center cohort of 2480 red cell masses. Haematologica 2020;105:e95–e7.

    Article  Google Scholar 

  23. Spivak JL, Considine M, Williams DM, Talbot CC,Jr, Rogers O, Moliterno AR. et al. Two clinical phenotypes in polycythemia vera. N. Engl. J. Med.2014;371:808–17.

    Article  Google Scholar 

  24. Catani L, Zini R, Sollazzo D, Ottaviani E, Vannucchi AM, Ferrari S, et al. Molecular profile of CD34+stem/progenitor cells according to JAK2V617F mutation status in essential thrombocythemia. Leukemia 2009;23:997–1000.

    Article  CAS  Google Scholar 

  25. Guglielmelli P, Zini R, Bogani C, Salati S, Pancrazzi A, Bianchi E, et al. Molecular profiling of CD34+cells in idiopathic myelofibrosis identifies a set of disease-associated genes and reveals the clinical significance of Wilms’ tumor gene 1 (WT1). Stem Cells. 2007;25:165–73.

    Article  CAS  Google Scholar 

  26. Gerber JM, Smith BD, Ngwang B, Zhang H, Vala MS, Morsberger L, et al. A clinically relevant population of leukemic CD34(+)CD38(-) cells in acute myeloid leukemia. Blood 2012;119:3571–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry L. Spivak.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spivak, J.L. Are polycythemia vera, essential thrombocytosis, and primary myelofibrosis 1, 2, or 3 diseases?. Leukemia 35, 1890–1893 (2021). https://doi.org/10.1038/s41375-021-01254-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01254-w

Search

Quick links