Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute lymphoblastic leukemia

Unmanipulated haploidentical hematopoietic stem cell transplantation is an excellent option for children and young adult relapsed/refractory Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia after CAR-T-cell therapy

Abstract

Although chimeric antigen receptor T-cell (CAR-T) therapy produces a high complete remission rate among patients with relapsed/refractory B-cell acute lymphoblastic leukemia, relapse remains an urgent issue. It is uncertain whether consolidative haploidentical-allogeneic hematopoietic stem cell transplantation (haplo-HSCT) is suitable for achieving sustainable remission. Therefore, we aimed to assess the efficacy and safety of bridging CAR-T therapy to haplo-HSCT. Fifty-two patients with relapsed/refractory Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia who underwent haplo-HSCT after CAR-T therapy were analyzed. The median time from CAR-T therapy to haplo-HSCT was 61 days. After a median follow-up of 24.6 months, the 1-year probabilities of event-free survival, overall survival, and cumulative incidence of relapse were 80.1% (95% confidence interval (CI), 69.0–90.9), 92.3% (95% CI, 85.0–99.5), and 14.1% (95% CI, 10.7–17.4), respectively, while the corresponding 2-year probabilities were 76.0% (95% CI, 64.2–87.7), 84.3% (95% CI, 74.3–94.3), and 19.7% (95% CI, 15.3–24.0), respectively. No increased risk of 2-year cumulative incidence of graft-versus-host disease, treatment-related mortality, or infection was observed. A pre-HSCT measurable residual disease-positive status was an independent factor associated with poor overall survival (hazard radio: 4.201, 95% CI: 1.034–17.063; P = 0.045). Haplo-HSCT may be a safe and effective treatment strategy to improve event-free survival and overall survival after CAR-T therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagram of patients enrolled in this study.
Fig. 2: Outcome of haploidentical allogeneic stem cell transplantations in patients with relapsed/refractory Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia.

Similar content being viewed by others

References

  1. Rafei H, Kantarjian HM, Jabbour EJ. Recent advances in the treatment of acute lymphoblastic leukemia. Leuk Lymphoma. 2019;60:2606–21.

    Article  CAS  Google Scholar 

  2. Inaba H, Pui CH. Immunotherapy in pediatric acute lymphoblastic leukemia. Cancer Metastasis Rev. 2019;38:595–610.

    Article  Google Scholar 

  3. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373:1541–52.

    Article  CAS  Google Scholar 

  4. Bhojwani D, Pui CH. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14:e205–17.

    Article  Google Scholar 

  5. Gokbuget N, Stanze D, Beck J, Diedrich H, Horst HA, Huttmann A, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood. 2012;120:2032–41.

    Article  Google Scholar 

  6. Sutton R, Shaw PJ, Venn NC, Law T, Dissanayake A, Kilo T, et al. Persistent MRD before and after allogeneic BMT predicts relapse in children with acute lymphoblastic leukaemia. Br J Haematol. 2015;168:395–404.

    Article  Google Scholar 

  7. Lovisa F, Zecca M, Rossi B, Campeggio M, Magrin E, Giarin E, et al. Pre- and post-transplant minimal residual disease predicts relapse occurrence in children with acute lymphoblastic leukaemia. Br J Haematol. 2018;180:680–93.

    Article  CAS  Google Scholar 

  8. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra25.

    Article  Google Scholar 

  9. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.

    Article  CAS  Google Scholar 

  10. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl J Med. 2018;378:439–48.

    Article  CAS  Google Scholar 

  11. Hay KA, Gauthier J, Hirayama AV, Voutsinas JM, Wu Q, Li D, et al. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood. 2019;133:1652–63.

    Article  CAS  Google Scholar 

  12. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–95.

    Article  CAS  Google Scholar 

  13. Wang Y, Liu QF, Xu LP, Liu KY, Zhang XH, Ma X, et al. Haploidentical vs identical-sibling transplant for AML in remission: a multicenter, prospective study. Blood. 2015;125:3956–62.

    Article  CAS  Google Scholar 

  14. Mo XD, Zhao XY, Liu DH, Chen YH, Xu LP, Zhang XH, et al. Umbilical cord blood transplantation and unmanipulated haploidentical hematopoietic SCT for pediatric hematologic malignances. Bone Marrow Transplant. 2014;49:1070–5.

    Article  CAS  Google Scholar 

  15. Xu L, Chen H, Chen J, Han M, Huang H, Lai Y, et al. The consensus on indications, conditioning regimen, and donor selection of allogeneic hematopoietic cell transplantation for hematological diseases in China-recommendations from the Chinese Society of Hematology. J Hematol Oncol. 2018;11:33.

    Article  Google Scholar 

  16. Liu D, Huang X, Liu K, Xu L, Chen H, Han W, et al. Haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for treatment of hematological malignancies in children. Biol Blood Marrow Transplant. 2008;14:469–77.

    Article  CAS  Google Scholar 

  17. Lai YR, Chen YH, Hu DM, Jiang M, Liu QF, Liu L, et al. Multicenter phase II study of a combination of cyclosporine a, methotrexate and mycophenolate mofetil for GVHD prophylaxis: results of the Chinese Bone Marrow Transplant Cooperative Group (CBMTCG). J Hematol Oncol. 2014;7:59.

    Article  Google Scholar 

  18. Wang Y, Wu DP, Liu QF, Xu LP, Liu KY, Zhang XH, et al. Low-dose post-transplant cyclophosphamide and anti-thymocyte globulin as an effective strategy for GVHD prevention in haploidentical patients. J Hematol Oncol 2019;12:88.

    Article  Google Scholar 

  19. Holstein SA, Lunning MA. CAR T-cell therapy in hematologic malignancies: a voyage in progress. Clin Pharm Ther. 2020;107:112–22.

    Article  CAS  Google Scholar 

  20. Shalabi H, Yuan CM, Kulshreshtha A, Dulau-Florea A, Salem D, Gupta GK, et al. Disease detection methodologies in relapsed B-cell acute lymphoblastic leukemia: opportunities for improvement. Pediatr Blood Cancer. 2020;67:e28149.

    Article  Google Scholar 

  21. Curran KJ, Margossian SP, Kernan NA, Silverman LB, Williams DA, Shukla N, et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood. 2019;134:2361–8.

    Article  Google Scholar 

  22. Mueller KT, Waldron E, Grupp SA, Levine JE, Laetsch TW, Pulsipher MA, et al. Clinical pharmacology of tisagenlecleucel in B-cell acute lymphoblastic leukemia. Clin Cancer Res. 2018;24:6175–84.

    Article  CAS  Google Scholar 

  23. Jiang H, Li C, Yin P, Guo T, Liu L, Xia L, et al. Anti-CD19 chimeric antigen receptor-modified T-cell therapy bridging to allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia: an open-label pragmatic clinical trial. Am J Hematol. 2019;94:1113–22.

    Article  CAS  Google Scholar 

  24. Pan J, Yang JF, Deng BP, Zhao XJ, Zhang X, Lin YH, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia. 2017;31:2587–93.

    Article  CAS  Google Scholar 

  25. Harris AC, Kitko CL, Couriel DR, Braun TM, Choi SW, Magenau J, et al. Extramedullary relapse of acute myeloid leukemia following allogeneic hematopoietic stem cell transplantation: incidence, risk factors and outcomes. Haematologica. 2013;98:179–84.

    Article  Google Scholar 

  26. Mo XD, Kong J, Zhao T, Xu LP, Zhang XH, Liu DH, et al. Extramedullary relapse of acute leukemia after haploidentical hematopoietic stem cell transplantation: incidence, risk factors, treatment, and clinical outcomes. Biol Blood Marrow Transplant. 2014;20:2023–8.

    Article  Google Scholar 

  27. Shadman M, Gauthier J, Hay KA, Voutsinas JM, Milano F, Li A, et al. Safety of allogeneic hematopoietic cell transplant in adults after CD19-targeted CAR T-cell therapy. Blood Adv. 2019;3:3062–9.

    Article  CAS  Google Scholar 

  28. Zhao XS, Liu YR, Xu LP, Wang Y, Zhang XH, Chen H, et al. Minimal residual disease status determined by multiparametric flow cytometry pretransplantation predicts the outcome of patients with ALL receiving unmanipulated haploidentical allografts. Am J Hematol. 2019;94:512–21.

    Article  Google Scholar 

  29. Zhao X, Zhao X, Chen H, Qin Y, Xu L, Zhang X, et al. Comparative analysis of flow cytometry and RQ-PCR for the detection of minimal residual disease in philadelphia chromosome-positive acute lymphoblastic leukemia after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2018;24:1936–43.

    Article  CAS  Google Scholar 

  30. Zhang Y, Chen H, Song Y, Tan X, Zhao Y, Liu X, et al. Chimeric antigens receptor T cell therapy as a bridge to haematopoietic stem cell transplantation for refractory/ relapsed B-cell acute lymphomalastic leukemia. Br J Haematol. 2020;189:146–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all the doctors at the institute who participated in this study for providing the follow-up samples and information.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Fei Cheng or Yu Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, GH., Zhao, XY., Zuo, YX. et al. Unmanipulated haploidentical hematopoietic stem cell transplantation is an excellent option for children and young adult relapsed/refractory Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia after CAR-T-cell therapy. Leukemia 35, 3092–3100 (2021). https://doi.org/10.1038/s41375-021-01236-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01236-y

This article is cited by

Search

Quick links