Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Hematopoietic stem progenitor cells lacking HLA differ from those lacking GPI-anchored proteins in the hierarchical stage and sensitivity to immune attack in patients with acquired aplastic anemia


To characterize glycosylphosphatidylinositol-anchored protein-deficient (GPI[−]) and HLA-class I allele-lacking (HLA[−]) hematopoietic stem progenitor cells (HSPCs) in acquired aplastic anemia (AA), we studied the peripheral blood (PB) of 56 AA patients in remission who possessed both (n = 13, Group A) or either GPI(−) (n = 34, Group B) and HLA(−) (n = 9, Group C) cell populations. Seventy-seven percent (10/13) of Group A had HLA(−) cells in all lineages of PB cells, including platelets, while only 23% (3/13) had GPI(−) cells in all lineages, and the median percentage of HLA(−) granulocytes in the total granulocytes (21.2%) was significantly higher than that of GPI(−) granulocytes (0.28%, P < 0.05). The greater lineage diversity in HLA(−) cells than in GPI(−) cells was also seen when Group B and Group C were compared. Longitudinal studies of seven patients in Group A showed a gradual decrease in the percentage of HLA(−) granulocytes, with a reciprocal increase in the GPI(−) granulocytes in four patients responding to cyclosporine (CsA) and an increase in the HLA(−) granulocytes with a stable or declining GPI(−) granulocytes in three patients in sustained remission off CsA therapy. These findings suggest that HLA(−) HSPCs differ from GPI(−) HSPCs in the hierarchical stage and sensitivity to immune attack in AA.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Lineage diversity in aplastic anemia patients who possessed both HLA(−) and GPI(−) cells.
Fig. 2: Lineage diversity and clone sizes in aplastic anemia patients with HLA(−) and GPI(−) cells.
Fig. 3: Lineage correlation with granulocytes in GPI(−) and HLA(−) cells.
Fig. 4: Chronological changes in HLA(−) granulocytes and GPI(−) granulocytes associated with IST.


  1. 1.

    Heuser M, Schlarmann C, Dobbernack V, Panagiota V, Wiehlmann L, Walter C, et al. Genetic characterization of acquired aplastic anemia by targeted sequencing. Haematologica. 2014;99(Sep):e165–167.

    CAS  Article  Google Scholar 

  2. 2.

    Kulasekararaj AG, Jiang J, Smith AE, Mohamedali AM, Mian S, Gandhi S, et al. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome. Blood. 2014;124(Oct):2698–704.

    CAS  Article  Google Scholar 

  3. 3.

    Yoshizato T, Dumitriu B, Hosokawa K, Makishima H, Yoshida K, Townsley D, et al. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia. N. Engl J Med. 2015;373(Jul):35–47.

    CAS  Article  Google Scholar 

  4. 4.

    Babushok DV, Perdigones N, Perin JC, Olson TS, Ye W, Roth JJ, et al. Emergence of clonal hematopoiesis in the majority of patients with acquired aplastic anemia. Cancer Genet. 2015;208(Apr):115–28.

    CAS  Article  Google Scholar 

  5. 5.

    Hosokawa K, Mizumaki H, Elbadry MI, Saito C, Espinoza JL. Thi Thanh Dao A, et al. Clonal hematopoiesis by SLIT1-mutated hematopoietic stem cells due to a breakdown of the autocrine loop involving Slit1 in acquired aplastic anemia. Leukemia. 2019;33(Nov):2732–66.

    Article  Google Scholar 

  6. 6.

    Tutelman PR, Aubert G, Milner RA, Dalal BI, Schultz KR, Deyell RJ. Paroxysmal nocturnal haemoglobinuria phenotype cells and leucocyte subset telomere length in childhood acquired aplastic anaemia. Br J Haematol. 2014;164(Mar):717–21.

    CAS  Article  Google Scholar 

  7. 7.

    Kulagin A, Lisukov I, Ivanova M, Golubovskaya I, Kruchkova I, Bondarenko S, et al. Prognostic value of paroxysmal nocturnal haemoglobinuria clone presence in aplastic anaemia patients treated with combined immunosuppression: results of two-centre prospective study. Br J Haematol. 2014;164(Feb):546–54.

    CAS  Article  Google Scholar 

  8. 8.

    Maruyama H, Katagiri T, Kashiwase K, Shiina T, Sato-Otsubo A, Zaimoku Y, et al. Clinical significance and origin of leukocytes that lack HLA-A allele expression in patients with acquired aplastic anemia. Exp Hematol. 2016;44(Oct):931–9. e933

    CAS  Article  Google Scholar 

  9. 9.

    Katagiri T, Sato-Otsubo A, Kashiwase K, Morishima S, Sato Y, Mori Y, et al. Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia. Blood. 2011;118(Dec):6601–9.

    CAS  Article  Google Scholar 

  10. 10.

    Mizumaki H, Hosomichi K, Hosokawa K, Yoroidaka T, Imi T, Zaimoku Y, et al. A frequent nonsense mutation in exon 1 across certain HLA-A and -B alleles in leukocytes of patients with acquired aplastic anemia. Haematologica. 2021;106:1–9.

    Article  Google Scholar 

  11. 11.

    Elbadry MI, Mizumaki H, Hosokawa K, Espinoza JL, Nakagawa N, Chonabayashi K, et al. Escape hematopoiesis by HLA-B5401-lacking hematopoietic stem progenitor cells in men with acquired aplastic anemia. Haematologica. 2019;104(Oct):e447–e450.

    CAS  Article  Google Scholar 

  12. 12.

    Zaimoku Y, Takamatsu H, Hosomichi K, Ozawa T, Nakagawa N, Imi T, et al. Identification of an HLA class I allele closely involved in the autoantigen presentation in acquired aplastic anemia. Blood. 2017;129(May):2908–16.

    CAS  Article  Google Scholar 

  13. 13.

    Espinoza JL, Elbadry MI, Chonabayashi K, Yoshida Y, Katagiri T, Harada K, et al. Hematopoiesis by iPSC-derived hematopoietic stem cells of aplastic anemia that escape cytotoxic T-cell attack. Blood Adv. 2018;2(Feb):390–400.

    CAS  Article  Google Scholar 

  14. 14.

    Young NS. Aplastic anemia. N. Engl J Med. 2018;379(Oct):1643–56.

    CAS  Article  Google Scholar 

  15. 15.

    Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MT, et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N. Engl J Med. 2009;361(Jul):478–88.

    CAS  Article  Google Scholar 

  16. 16.

    Hosokawa K, Katagiri T, Sugimori N, Ishiyama K, Sasaki Y, Seiki Y, et al. Favorable outcome of patients who have 13q deletion: a suggestion for revision of the WHO ‘MDS-U’ designation. Haematologica. 2012;97(Dec):1845–9.

    CAS  Article  Google Scholar 

  17. 17.

    Sugimori C, Chuhjo T, Feng X, Yamazaki H, Takami A, Teramura M, et al. Minor population of CD55-CD59- blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood. 2006;107(Feb):1308–14.

    CAS  Article  Google Scholar 

  18. 18.

    Gargiulo L, Papaioannou M, Sica M, Talini G, Chaidos A, Richichi B, et al. Glycosylphosphatidylinositol-specific, CD1d-restricted T cells in paroxysmal nocturnal hemoglobinuria. Blood. 2013;121(Apr):2753–61.

    CAS  Article  Google Scholar 

  19. 19.

    Gargiulo L, Zaimoku Y, Scappini B, Maruyama H, Ohumi R, Luzzatto L, et al. Glycosylphosphatidylinositol-specific T cells, IFN-gamma-producing T cells, and pathogenesis of idiopathic aplastic anemia. Blood. 2017;129(Jan):388–92.

    CAS  Article  Google Scholar 

  20. 20.

    Murakami Y, Kosaka H, Maeda Y, Nishimura J, Inoue N, Ohishi K, et al. Inefficient response of T lymphocytes to glycosylphosphatidylinositol anchor-negative cells: implications for paroxysmal nocturnal hemoglobinuria. Blood. 2002;100(Dec):4116–22.

    CAS  Article  Google Scholar 

  21. 21.

    Parker CJ. The pathophysiology of paroxysmal nocturnal hemoglobinuria. Exp Hematol. 2007;35(Apr):523–33.

    CAS  Article  Google Scholar 

  22. 22.

    Khurana S, Margamuljana L, Joseph C, Schouteden S, Buckley SM, Verfaillie CM. Glypican-3-mediated inhibition of CD26 by TFPI: a novel mechanism in hematopoietic stem cell homing and maintenance. Blood. 2013;121(Apr):2587–95.

    CAS  Article  Google Scholar 

  23. 23.

    Hosokawa K, Sugimori C, Ishiyama K, Takamatsu H, Noji H, Shichishima T, et al. Establishment of a flow cytometry assay for detecting paroxysmal nocturnal hemoglobinuria-type cells specific to patients with bone marrow failure. Ann Hematol. 2018;97(Dec):2289–97.

    CAS  Article  Google Scholar 

  24. 24.

    Katagiri T, Kawamoto H, Nakakuki T, Ishiyama K, Okada-Hatakeyama M, Ohtake S, et al. Individual hematopoietic stem cells in human bone marrow of patients with aplastic anemia or myelodysplastic syndrome stably give rise to limited cell lineages. Stem Cells. 2013;31(Mar):536–46.

    CAS  Article  Google Scholar 

  25. 25.

    Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G, et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science. 2016;351(Jan):aab2116.

    Article  Google Scholar 

  26. 26.

    Yoroidaka T, Hosokawa K, Imi T, Katagiri T, Azuma F, Nakao S. Bystander Proliferation of Piga-Mutated Hematopoietic Progenitor Cells in Acquired Aplastic Anemia Patients Possessing HLA Class I Allele-Lacking Leukocytes. Blood. 2018;132(Suppl. 1):1308–1308.

    Article  Google Scholar 

  27. 27.

    Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48(Mar):452–8.

    CAS  Article  Google Scholar 

  28. 28.

    Araten DJ, Boxer D, Zamechek L, Sherman E, Nardi M. Analysis of platelets by flow cytometry in patients with Paroxysmal Nocturnal Hemoglobinuria (PNH). Blood Cells Mol Dis. 2020;80(Feb):102372.

    CAS  Article  Google Scholar 

  29. 29.

    Sanchez MJ, Muench MO, Roncarolo MG, Lanier LL, Phillips JH. Identification of a common T/natural killer cell progenitor in human fetal thymus. J Exp Med. 1994;180(Aug):569–76.

    CAS  Article  Google Scholar 

  30. 30.

    El-Sherbiny YM, Kelly RJ, Hill A, Doody GM, Hillmen P, Cook GP. Altered natural killer cell subset homeostasis and defective chemotactic responses in paroxysmal nocturnal hemoglobinuria. Blood. 2013;122(Sep):1887–90.

    CAS  Article  Google Scholar 

  31. 31.

    Imi T, Katagiri T, Hosomichi K, Zaimoku Y, Hoang Nguyen V, Nakagawa N, et al. Sustained clonal hematopoiesis by HLA-lacking hematopoietic stem cells without driver mutations in aplastic anemia. Blood Adv. 2018;2(May):1000–12.

    CAS  Article  Google Scholar 

  32. 32.

    Sugimori C, Mochizuki K, Qi Z, Sugimori N, Ishiyama K, Kondo Y, et al. Origin and fate of blood cells deficient in glycosylphosphatidylinositol-anchored protein among patients with bone marrow failure. Br J Haematol. 2009;147(Oct):102–12.

    CAS  Article  Google Scholar 

  33. 33.

    Tominaga R, Katagiri T, Kataoka K, Kataoka K, Wee RK, Maeda A, et al. Paroxysmal nocturnal hemoglobinuria induced by the occurrence of BCR-ABL in a PIGA mutant hematopoietic progenitor cell. Leukemia. 2016;30(May):1208–10.

    CAS  Article  Google Scholar 

  34. 34.

    Takahashi N, Miura I, Saitoh K, Miura AB. Lineage involvement of stem cells bearing the philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization. Blood. 1998;92(Dec):4758–63.

    CAS  Article  Google Scholar 

  35. 35.

    Arends CM, Galan-Sousa J, Hoyer K, Chan W, Jager M, Yoshida K, et al. Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia. 2018;32(Sep):1908–19.

    CAS  Article  Google Scholar 

  36. 36.

    Inoue N, Izui-Sarumaru T, Murakami Y, Endo Y, Nishimura J, Kurokawa K, et al. Molecular basis of clonal expansion of hematopoiesis in 2 patients with paroxysmal nocturnal hemoglobinuria (PNH). Blood. 2006;108(Dec):4232–6.

    CAS  Article  Google Scholar 

  37. 37.

    Shen W, Clemente MJ, Hosono N, Yoshida K, Przychodzen B, Yoshizato T, et al. Deep sequencing reveals stepwise mutation acquisition in paroxysmal nocturnal hemoglobinuria. J Clin Invest. 2014;124(Oct):4529–38.

    CAS  Article  Google Scholar 

Download references


This work was supported by MEXT KAKENHI (Grant-in-Aid for Scientific Research (B), Grant Number: 24390243) to S.N., MEXT KAKENHI (Grant-in-Aid for Young Scientists (B), Grant Number: 26860363) to T.K., MEXT KAKENHI (Grant-in-Aid for Young Scientists, Grant Number: 17K16184 and 19K17823) to K.H., MEXT KAKENHI (Grant-in-Aid for Scientific Research (C), Grant Number: 18K08318) to H.Y., Hokkoku Foundation for Cancer Research to T.K and K.H. The authors thank the patients and donors and their physicians for contributing to this study and the Advanced Preventive Medical Sciences Research Center, Kanazawa University for the use of facilities. We thank Prof. Hiroshi Kawamoto for careful reading of the manuscript. T.Y. is a PhD candidate at Kanazawa University and this work is submitted in partial fulfillment of the requirements for the PhD.

Author information




T.Y., K.H., T.I., H.M., T.K., K.I., H.Y., and S.N. collected clinical data and blood samples. T.Y. performed flow cytometry. F.A. performed HLA genotyping. T.Y. performed cell sorting. Y.N., S.O. performed deep sequencing. T.Y., K.H., and S.N. designed the research and wrote the manuscript. All authors critically reviewed the manuscript and checked the final version. T.Y. and K.H. contributed equally to this work.

Corresponding author

Correspondence to Shinji Nakao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoroidaka, T., Hosokawa, K., Imi, T. et al. Hematopoietic stem progenitor cells lacking HLA differ from those lacking GPI-anchored proteins in the hierarchical stage and sensitivity to immune attack in patients with acquired aplastic anemia. Leukemia (2021).

Download citation


Quick links