CHRONIC LYMPHOCYTIC LEUKEMIA

Mapping comorbidity in chronic lymphocytic leukemia: impact of individual comorbidities on treatment, mortality, and causes of death

Abstract

Comorbid conditions are highly prevalent in chronic lymphocytic leukemia (CLL), nevertheless, detailed information on the association of specific comorbidities with CLL prognosis is missing. Using Danish, nation-wide registers, we followed consecutive patients from CLL-diagnosis in 1997–2018, until death or end of follow-up. Sub-grouping of comorbidities was defined using a modified Charlson comorbidity index. Patients were matched on sex, date of birth (±1 month), and region of residency with up to ten comparators from the general population. In total, 9170 patients with CLL were included in the study, with a median of 5.0 years of follow-up. All comorbid conditions studied were individually associated with increased mortality, and many also with increased cause-specific mortality, related or unrelated to CLL. Comorbidity correlated with increased mortality from infections and cardiovascular disease. CLL patients, particularly older, had a significant loss of lifetime compared with the general population. This study highlights a large subgroup of comorbid CLL patients with an unmet treatment-need and missing efficacy and safety data on treatment, who are under-prioritized in clinical trials. Also, studies assessing interventions that may provide better tolerability of treatment in older or comorbid patients, with cancer in general, and CLL in particular, are warranted.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Association between individual comorbidities and all-cause mortality and cause-specific mortality among CLL patients.
Fig. 2: Causes of death for CLL patients who are non-comorbid, comorbid, or multimorbid.
Fig. 3: Overall survival (OS) for patients with CLL compared with matched comparators from the general population stratified on comorbidity and age.

References

  1. 1.

    da Cunha-Bang C, Simonsen J, Rostgaard K, Geisler C, Hjalgrim H, Niemann CU. Improved survival for patients diagnosed with chronic lymphocytic leukemia in the era of chemo-immunotherapy: a Danish population-based study of 10455 patients. Blood. Cancer J. 2016;6:e499.

    Google Scholar 

  2. 2.

    Woyach JA, Ruppert AS, Heerema NA, Zhao W, Booth AM, Ding W, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018;379:2517–28.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Moreno C, Greil R, Demirkan F, Tedeschi A, Anz B, Larratt L, et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20:43–56.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Fischer K, Al-Sawaf O, Bahlo J, Fink AM, Tandon M, Dixon M, et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med. 2019;380:2225–36.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Jain N, Keating M, Thompson P, Ferrajoli A, Burger J, Borthakur G, et al. Ibrutinib and venetoclax for first-line treatment of CLL. N Engl J Med. 2019;380:2095–103.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Shanafelt TD, Wang XV, Kay NE, Hanson CA, O’Brien S, Barrientos J, et al. Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med. 2019;381:432–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392:1859–922.

    PubMed Central  Article  PubMed  Google Scholar 

  8. 8.

    Noone A, Howlader N, Krapcho M, Miller D, Brest A, Yu M, et al. SEER cancer statistics review, 1975–2015, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2015/, based on November 2017 SEER data submission, posted to the SEER web site, April 2018.

  9. 9.

    Strati P, Parikh SA, Chaffee KG, Kay NE, Call TG, Achenbach SJ, et al. Relationship between co-morbidities at diagnosis, survival and ultimate cause of death in patients with chronic lymphocytic leukaemia (CLL): a prospective cohort study. Br J Haematol. 2017;178:394–402.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Rigolin GM, Cavallari M, Quaglia FM, Formigaro L, Lista E, Urso A, et al. In CLL, comorbidities and the complex karyotype are associated with an inferior outcome independently of CLL-IPI. Blood. 2017;129:3495–8.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Thurmes P, Call T, Slager S, Zent C, Jenkins G, Schwager S, et al. Comorbid conditions and survival in unselected, newly diagnosed patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2008;49:49–56.

    PubMed  Article  Google Scholar 

  12. 12.

    Conrad N, Judge A, Tran J, Mohseni H, Hedgecott D, Crespillo AP, et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet. 2018;391:572–80.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Zghebi SS, Steinke DT, Carr MJ, Rutter MK, Emsley RA, Ashcroft DM. Examining trends in type 2 diabetes incidence, prevalence and mortality in the UK between 2004 and 2014. Diabetes Obes Metab. 2017;19:1537–45.

  14. 14.

    Green A, Sortso C, Jensen PB, Emneus M. Incidence, morbidity, mortality, and prevalence of diabetes in Denmark, 2000–2011: results from the diabetes impact study 2013. Clin Epidemiol. 2015;7:421–30.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N Engl J Med. 2017;376:1419–29.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Kingston A, Robinson L, Booth H, Knapp M, Jagger C. Projections of multi-morbidity in the older population in England to 2035: estimates from the population ageing and care simulation (PACSim) model. Age Ageing. 2018;47:374–80.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Baumann T, Delgado J, Santacruz R, Martinez-Trillos A, Royo C, Navarro A. et al. Chronic lymphocytic leukemia in the elderly: clinico-biological features, outcomes, and proposal of a prognostic model. Haematologica. 2014;99:1599–604.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Reyes C, Satram-Hoang S, Hoang K, Momin F, Guduru SR, Skettino S. What is the impact of comorbidity burden on treatment patterns and outcomes in elderly chronic lymphocytic leukemia patients?. Blood. 2012;120:758

    Article  Google Scholar 

  19. 19.

    Manda S, James S, Wang R, Krishnan R, Danilov AV. Impact of comorbidities on treatment outcomes in chronic lymphocytic leukemia: a retrospective analysis. Blood. 2014;124:1312.

    Article  Google Scholar 

  20. 20.

    Gordon MJ, Churnetski M, Alqahtani H, Rivera X, Kittai A, Amrock SM, et al. Comorbidities predict inferior outcomes in chronic lymphocytic leukemia treated with ibrutinib. Cancer. 2018;124:3192–200.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Eichhorst BF, Busch R, Stilgenbauer S, Stauch M, Bergmann MA, Ritgen M, et al. First-line therapy with fludarabine compared with chlorambucil does not result in a major benefit for elderly patients with advanced chronic lymphocytic leukemia. Blood. 2009;114:3382–91.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Goede V, Cramer P, Busch R, Bergmann M, Stauch M, Hopfinger G, et al. Interactions between comorbidity and treatment of chronic lymphocytic leukemia: results of German chronic lymphocytic leukemia study group trials. Haematologica. 2014;99:1095–100.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Michallet AS, Cazin B, Bouvet E, Oberic L, Schlaifer D, Mosser L, et al. First immunochemotherapy outcomes in elderly patients with CLL: a retrospective analysis. J Geriatr Oncol. 2013;4:141–7.

    PubMed  Article  Google Scholar 

  24. 24.

    Strugov V, Stadnik E, Virts Y, Andreeva T, Zaritskey A. Impact of age and comorbidities on the efficacy of FC and FCR regimens in chronic lymphocytic leukemia. Ann Hematol. 2018;97:2153–61.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Vojdeman FJ, Van’t Veer MB, Tjonnfjord GE, Itala-Remes M, Kimby E, Polliack A, et al. The HOVON68 CLL trial revisited: performance status and comorbidity affect survival in elderly patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2017;58:594–600.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Schmidt M, Schmidt SAJ, Adelborg K, Sundboll J, Laugesen K, Ehrenstein V, et al. The Danish health care system and epidemiological research: from health care contacts to database records. Clin Epidemiol. 2019;11:563–91.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Pedersen CB. The Danish civil registration system. Scand J Public Health. 2011;39(7 Suppl):22–5.

    PubMed  Article  Google Scholar 

  28. 28.

    Gjerstorff ML. The Danish cancer registry. Scand J Public Health. 2011;39(7 Suppl):42–5.

    PubMed  Article  Google Scholar 

  29. 29.

    da Cunha-Bang C, Geisler CH, Enggaard L, Poulsen CB, de Nully Brown P, Frederiksen H, et al. The Danish national chronic lymphocytic leukemia registry. Clin Epidemiol. 2016;8:561–5.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Schmidt M, Pedersen L, Sorensen HT. The Danish civil registration system as a tool in epidemiology. Eur J Epidemiol. 2014;29:541–9.

    PubMed  Article  Google Scholar 

  31. 31.

    Lynge E, Sandegaard JL, Rebolj M. The Danish national patient register. Scand J Public Health. 2011;39(7 Suppl):30–3.

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–83.

    CAS  Article  Google Scholar 

  33. 33.

    Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173:676–82.

    PubMed  Article  Google Scholar 

  34. 34.

    Hansen DL, Moller S, Andersen K, Gaist D, Frederiksen H. Evans syndrome in adults—incidence, prevalence, and survival in a nationwide cohort. Am J Hematol. 2019;94:1081–90.

    PubMed  Article  Google Scholar 

  35. 35.

    Ewertz M, Land LH, Dalton SO, Cronin-Fenton D, Jensen MB. Influence of specific comorbidities on survival after early-stage breast cancer. Acta Oncol. 2018;57:129–34.

    PubMed  Article  Google Scholar 

  36. 36.

    Wasterlid T, Mohammadi M, Smedby KE, Glimelius I, Jerkeman M, Bottai M, et al. Impact of comorbidity on disease characteristics, treatment intent and outcome in diffuse large B-cell lymphoma: a Swedish lymphoma register study. J Intern Med. 2018;285:455–68.

    PubMed  Article  Google Scholar 

  37. 37.

    Plana-Ripoll O, Pedersen CB, Holtz Y, Benros ME, Dalsgaard S, de Jonge P, et al. Exploring comorbidity within mental disorders among a danish national population. JAMA Psychiatry. 2019;76:259–70.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining comorbidity: implications for understanding health and health services. Ann Fam Med. 2009;7:357–63.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Helweg-Larsen K. The Danish register of causes of death. Scand J Public Health. 2011;39(7 Suppl):26–9.

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Miller MD, Towers A. A manual of guidelines for scoring the cumulative illness rating scale for geriatrics (CIRS-G).

  41. 41.

    Salvi F, Miller MD, Grilli A, Giorgi R, Towers AL, Morichi V, et al. A manual of guidelines to score the modified cumulative illness rating scale and its validation in acute hospitalized elderly patients. J Am Geriatr Soc. 2008;56:1926–31.

    PubMed  Article  Google Scholar 

  42. 42.

    Jorgensen TL, Hallas J, Friis S, Herrstedt J. Comorbidity in elderly cancer patients in relation to overall and cancer-specific mortality. Br J Cancer. 2012;106:1353–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Raji MA, Kuo YF, Freeman JL, Goodwin JS. Effect of a dementia diagnosis on survival of older patients after a diagnosis of breast, colon, or prostate cancer: implications for cancer care. Arch Intern Med. 2008;168:2033–40.

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Gupta SK, Lamont EB. Patterns of presentation, diagnosis, and treatment in older patients with colon cancer and comorbid dementia. J Am Geriatr Soc. 2004;52:1681–7.

    PubMed  Article  Google Scholar 

  45. 45.

    Khan AE, Gallo V, Linseisen J, Kaaks R, Rohrmann S, Raaschou-Nielsen O, et al. Diabetes and the risk of non-Hodgkin’s lymphoma and multiple myeloma in the European prospective investigation into cancer and nutrition. Haematologica. 2008;93:842–50.

    PubMed  Article  Google Scholar 

  46. 46.

    Wideroff L, Gridley G, Mellemkjaer L, Chow WH, Linet M, Keehn S, et al. Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark. J Natl Cancer Inst. 1997;89:1360–5.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Sogaard M, Thomsen RW, Bossen KS, Sorensen HT, Norgaard M. The impact of comorbidity on cancer survival: a review. Clin Epidemiol. 2013;5(Suppl 1):3–29.

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Delgado J, Pratt G, Phillips N, Briones J, Fegan C, Nomdedeu J, et al. Beta2-microglobulin is a better predictor of treatment-free survival in patients with chronic lymphocytic leukaemia if adjusted according to glomerular filtration rate. Br J Haematol. 2009;145:801–5.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Al-Sawaf O, Bahlo J, Robrecht S, Fischer K, Herling CD, Hoechstetter M, et al. Outcome of patients aged 80 years or older treated for chronic lymphocytic leukaemia. Br J Haematol. 2018;183:727–35.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Eichhorst B, Fink AM, Bahlo J, Busch R, Kovacs G, Maurer C, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016;17:928–42.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Hurria A, Togawa K, Mohile SG, Owusu C, Klepin HD, Gross CP, et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J Clin Oncol. 2011;29:3457–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Furstenau M, Hallek M, Eichhorst B. Sequential and combination treatments with novel agents in chronic lymphocytic leukemia. Haematologica. 2019;104:2144–54.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Goede V, Fischer K, Engelke A, Schlag R, Lepretre S, Montero LF, et al. Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL11 study. Leukemia. 2015;29:1602–4.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Fischer K, Ritgen M, Al-Sawaf O, Robrecht S, Tandon M, Fink AM, et al. Quantitative analysis of minimal residual disease (MRD) shows high rates of undetectable MRD after fixed-duration chemotherapy-free treatment and serves as surrogate marker for progression-free survival: a prospective analysis of the randomized CLL14 trial. Blood. 2019;134(Supplement_1):36.

    Article  Google Scholar 

  55. 55.

    Rotbain EC, Frederiksen H, Hjalgrim H, Rostgaard K, Egholm GJ, Zahedi B, et al. IGHV mutational status and outcome for patients with chronic lymphocytic leukemia upon treatment: a Danish nationwide population-based study. Haematologica. 2020;105:1621–9.

  56. 56.

    Andersen MA, Moser CE, Lundgren J, Niemann CU. Epidemiology of bloodstream infections in patients with chronic lymphocytic leukemia: a longitudinal nation-wide cohort study. Leukemia 2019;33:662–70.

    PubMed  Article  Google Scholar 

  57. 57.

    Nabhan C, Mato A, Flowers CR, Grinblatt DL, Lamanna N, Weiss MA, et al. Characterizing and prognosticating chronic lymphocytic leukemia in the elderly: prospective evaluation on 455 patients treated in the United States. BMC Cancer. 2017;17:198.

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Morrison VA. Infectious complications in patients with chronic lymphocytic leukemia: pathogenesis, spectrum of infection, and approaches to prophylaxis. Clin Lymphoma Myeloma. 2009;9:365–70.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Da Cunha-Bang C, Agius R, Kater AP, Levin MD, Österborg A, Mattsson M, et al. PreVent-ACaLL Short-term combined acalabrutinib and venetoclax treatment of newly diagnosed patients with CLL at high risk of infection and/or early treatment, who do not fulfil IWCLL treatment criteria for treatment. A randomized study with extensive immune phenotyping. Blood. 2019;134 (Supplement_1):4304.

  60. 60.

    Johansson LA, Bjorkenstam C, Westerling R. Unexplained differences between hospital and mortality data indicated mistakes in death certification: an investigation of 1094 deaths in Sweden during 1995. J Clin Epidemiol. 2009;62:1202–9.

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from Novo Nordisk Foundation grant NNF16OC0019302 and AstraZeneca to CUN and Neye Fonden to HHJ. AstraZeneca was provided with the opportunity to prospectively review the manuscript. The funding sources had no role in the study design, collection, analysis, or interpretation of the data, writing the manuscript, or the decision to submit the paper for publication.

Author information

Affiliations

Authors

Contributions

ECR and KR conducted the data management and analyzed the data. ECR and HF wrote the first draft of the paper. All authors contributed to the study concept and design, writing of the manuscript, and approved the final paper.

Corresponding author

Correspondence to Emelie Curovic Rotbain.

Ethics declarations

Conflict of interest

ECR received consultancy fees or travel grants from Abbvie, Janssen, and AstraZeneca. HF received support outside this work from Alexion, Gilead, Abbvie, Janssen Pharmaceuticals, and Novartis. CC-B received consultancy fees and/or travel grants from Abbvie, and Gilead. CUN received support from Novo Nordisk Foundation NNF16OC0019302 and AstraZeneca within this work. CUN received support, consultancy fees, or travel grants from Abbvie, Gilead, Janssen, Roche, CSL Behring, Acerta, Genmab, Sunesis, and Astra Zeneca outside this work. HHJ received support from Neye Fonden outside this work. KR reports no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rotbain, E.C., Niemann, C.U., Rostgaard, K. et al. Mapping comorbidity in chronic lymphocytic leukemia: impact of individual comorbidities on treatment, mortality, and causes of death. Leukemia (2021). https://doi.org/10.1038/s41375-021-01156-x

Download citation

Search

Quick links