Acute lymphoblastic leukemia

Cross-talk between GLI transcription factors and FOXC1 promotes T-cell acute lymphoblastic leukemia dissemination

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is a highly malignant pediatric leukemia, where few therapeutic options are available for patients which relapse. We find that therapeutic targeting of GLI transcription factors by GANT-61 is particularly effective against NOTCH1 unmutated T-ALL cells. Investigation of the functional role of GLI1 disclosed that it contributes to T-ALL cell proliferation, survival, and dissemination through the modulation of AKT and CXCR4 signaling pathways. Decreased CXCR4 signaling following GLI1 inactivation was found to be prevalently due to post-transcriptional mechanisms including altered serine 339 CXCR4 phosphorylation and cortactin levels. We also identify a novel cross-talk between GLI transcription factors and FOXC1. Indeed, GLI factors can activate the expression of FOXC1 which is able to stabilize GLI1/2 protein levels through attenuation of their ubiquitination. Further, we find that prolonged GLI1 deficiency has a double-edged role in T-ALL progression favoring disease dissemination through the activation of a putative AKT/FOXC1/GLI2 axis. These findings have clinical significance as T-ALL patients with extensive central nervous system dissemination show low GLI1 transcript levels. Further, T-ALL patients having a GLI2-based Hedgehog activation signature are associated with poor survival. Together, these findings support a rationale for targeting the FOXC1/AKT axis to prevent GLI-dependent oncogenic Hedgehog signaling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Expression of Hedgehog pathway components in models of T-ALL and activity of pharmacologic inhibitors of Hedgehog signaling pathway.
Fig. 2: GLI1 deficient T-ALL cells undergo cell-cycle arrest and apoptosis under low nutrient conditions.
Fig. 3: GLI1 deficiency affects leukemic cell localization and survival in immunodeficient mice.
Fig. 4: GLI1 deficiency alters CXCR4 surface expression and signaling.
Fig. 5: GLI1 deficient T-ALL cells show impaired CXCR4 receptor recycling and reduced levels of FOXC1.
Fig. 6: GLI transcription factors and FOXC1 establish a novel regulatory loop.
Fig. 7: Compensatory GLI2 activation in GLI1 deficient cells occurs and predicts aggressive leukemia in vivo.

References

  1. 1.

    Mar BG, Amakye D, Aifantis I, Buonamici S. The controversial role of the Hedgehog pathway in normal and malignant hematopoiesis. Leukemia. 2011;25:1665–73.

    CAS  Article  Google Scholar 

  2. 2.

    Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget. 2015;6:13899–913.

    Article  Google Scholar 

  3. 3.

    Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med. 2013;19:1410–22.

    CAS  Article  Google Scholar 

  4. 4.

    Crompton T, Outram SV, Hager-Theodorides AL. Sonic hedgehog signalling in T-cell development and activation. Nat Rev Immunol. 2007;7:726–35.

    CAS  Article  Google Scholar 

  5. 5.

    Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development. 2001;128:1717–30.

    CAS  PubMed  Google Scholar 

  6. 6.

    Dagklis A, Pauwels D, Lahortiga I, Geerdens E, Bittoun E, Cauwelier B, et al. Hedgehog pathway mutations in T-cell acute lymphoblastic leukemia. Haematologica. 2015;100:e102–5.

    Article  Google Scholar 

  7. 7.

    Burns MA, Liao ZW, Yamagata N, Pouliot GP, Stevenson KE, Neuberg DS, et al. Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia. Leukemia. 2018;32:2126–37.

    CAS  Article  Google Scholar 

  8. 8.

    Dagklis A, Demeyer S, De Bie J, Radaelli E, Pauwels D, Degryse S, et al. Hedgehog pathway activation in T-cell acute lymphoblastic leukemia predicts response to SMO and GLI1 inhibitors. Blood. 2016;128:2642–54.

    CAS  Article  Google Scholar 

  9. 9.

    Du X, Wen J, Wang Y, Karmaus PWF, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8alpha(+) dendritic cells. Nature. 2018;558:141–5.

    CAS  Article  Google Scholar 

  10. 10.

    Piovan E, Yu J, Tosello V, Herranz D, Ambesi-Impiombato A, Da Silva AC, et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer cell. 2013;24:766–76.

    CAS  Article  Google Scholar 

  11. 11.

    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS  Article  Google Scholar 

  12. 12.

    Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M, et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell. 2011;19:484–97.

    CAS  Article  Google Scholar 

  13. 13.

    Ng OH, Erbilgin Y, Firtina S, Celkan T, Karakas Z, Aydogan G, et al. Deregulated WNT signaling in childhood T-cell acute lymphoblastic leukemia. Blood cancer J. 2014;4:e192.

    CAS  Article  Google Scholar 

  14. 14.

    Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49:1211–8.

    CAS  Article  Google Scholar 

  15. 15.

    Ntziachristos P, Tsirigos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS, et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med. 2012;18:298–301.

    CAS  Article  Google Scholar 

  16. 16.

    Beauchamp EM, Ringer L, Bulut G, Sajwan KP, Hall MD, Lee YC, et al. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J Clin Investig. 2011;121:148–60.

    CAS  Article  Google Scholar 

  17. 17.

    Tosello V, Milani G, Martines A, Macri N, Van Loocke W, Matthijssens F, et al. A novel t(8;14)(q24;q11) rearranged human cell line as a model for mechanistic and drug discovery studies of NOTCH1-independent human T-cell leukemia. Cells. 2018;7:160.

    CAS  Article  Google Scholar 

  18. 18.

    Palomero T, Barnes KC, Real PJ, Glade Bender JL, Sulis ML, Murty VV, et al. CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to gamma-secretase inhibitors. Leukemia. 2006;20:1279–87.

    CAS  Article  Google Scholar 

  19. 19.

    Pitt LA, Tikhonova AN, Hu H, Trimarchi T, King B, Gong Y, et al. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell. 2015;27:755–68.

    CAS  Article  Google Scholar 

  20. 20.

    Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem. 2005;280:35760–6.

    CAS  Article  Google Scholar 

  21. 21.

    Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S, et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med. 2009;206:1957–70.

    CAS  Article  Google Scholar 

  22. 22.

    Busillo JM, Armando S, Sengupta R, Meucci O, Bouvier M, Benovic JL. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. The. J Biol Chem. 2010;285:7805–17.

    CAS  Article  Google Scholar 

  23. 23.

    Passaro D, Irigoyen M, Catherinet C, Gachet S, Da Costa De Jesus C, Lasgi C, et al. CXCR4 is required for leukemia-initiating cell activity in T cell acute lymphoblastic leukemia. Cancer Cell. 2015;27:769–79.

    CAS  Article  Google Scholar 

  24. 24.

    Han B, Qu Y, Jin Y, Yu Y, Deng N, Wawrowsky K, et al. FOXC1 activates smoothened-independent hedgehog signaling in basal-like breast cancer. Cell Rep. 2015;13:1046–58.

    CAS  Article  Google Scholar 

  25. 25.

    Gilding LN, Somervaille TCP. The diverse consequences of FOXC1 deregulation in cancer. Cancers. 2019;11:184.

    CAS  Article  Google Scholar 

  26. 26.

    Omatsu Y, Seike M, Sugiyama T, Kume T, Nagasawa T. Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature. 2014;508:536–40.

    CAS  Article  Google Scholar 

  27. 27.

    Riobo NA, Lu K, Ai X, Haines GM, Emerson CP Jr. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci USA. 2006;103:4505–10.

    CAS  Article  Google Scholar 

  28. 28.

    Niewiadomski P, Niedziolka SM, Markiewicz L, Uspienski T, Baran B, Chojnowska K. Gli proteins: regulation in development and cancer. Cells. 2019;8:147.

    CAS  Article  Google Scholar 

  29. 29.

    Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N, et al. The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res. 2010;16:6060–70.

    CAS  Article  Google Scholar 

  30. 30.

    Ingram WJ, McCue KI, Tran TH, Hallahan AR, Wainwright BJ. Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene. 2008;27:1489–500.

    CAS  Article  Google Scholar 

  31. 31.

    Inaguma S, Riku M, Ito H, Tsunoda T, Ikeda H, Kasai K. GLI1 orchestrates CXCR4/CXCR7 signaling to enhance migration and metastasis of breast cancer cells. Oncotarget. 2015;6:33648–57.

    Article  Google Scholar 

  32. 32.

    Somerville TD, Wiseman DH, Spencer GJ, Huang X, Lynch JT, Leong HS, et al. Frequent derepression of the mesenchymal transcription factor gene FOXC1 in acute myeloid leukemia. Cancer Cell. 2015;28:329–42.

    CAS  Article  Google Scholar 

  33. 33.

    Hayashi H, Kume T. Forkhead transcription factors regulate expression of the chemokine receptor CXCR4 in endothelial cells and CXCL12-induced cell migration. Biochem Biophys Res Commun. 2008;367:584–9.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Jon Aster for the MigR1-NOTCH1 L1601PΔP vector, Sonia Minuzzo and Marica Pinazza for providing T-ALL xenografts, Silvia Dalla Santa and Elena Laura Mazzoldi for cell sorting, Elena Masiero and Vito Barbieri for technical assistance. We are grateful to Xiaojiang Cui for generously donating the pBABE-puro-FOXC1 vector. We are particularly grateful to Gloria Milani for performing gene expression profiling on PDX samples. We are grateful to Stacey Odgen for sharing GLI antibodies.

Funding

This work was supported by the Italian Foundation for Cancer Research (Fondazione AIRC) grants to EP (IG2018#22233) and PZ (IG2013#14256); Progetto di Ricerca di Ateneo (SID19_01; Università di Padova) to EP Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) Ex 60% to EP; Istituto Oncologico Veneto 5×1000 fund to EP. There are no conflicts of interest to declare.

Author information

Affiliations

Authors

Contributions

VT performed and analyzed experiments. DB, MM and VS performed and interpreted quantitative PCR experiments. JL, QP, K-KY, and JY performed bioinformatical analysis and helped in writing the manuscript. MVT and PVV shared reagents and analyzed data. MP performed and helped in interpreting IHC results. APDT helped in interpreting IHC results. AA and PZ shared reagents and analyzed data. EP designed and performed some experiments, directed research, analyzed data and wrote the paper. All the authors read and edited the manuscript.

Corresponding author

Correspondence to Erich Piovan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tosello, V., Bongiovanni, D., Liu, J. et al. Cross-talk between GLI transcription factors and FOXC1 promotes T-cell acute lymphoblastic leukemia dissemination. Leukemia (2020). https://doi.org/10.1038/s41375-020-0999-2

Download citation

Search

Quick links