Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acute myeloid leukemia

Distinct and overlapping mechanisms of resistance to azacytidine and guadecitabine in acute myeloid leukemia

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of AZA and GDAC resistance mechanisms in THP1 cells using a genome-wide CRISPR screen.
Fig. 2: Loss of SLC29A1, DCK and UCK2 mediate distinct resistance patterns to AZA, GDAC, and cytarabine.

References

  1. Quintás-Cardama A, Santos FPS, Garcia-Manero G. Therapy with azanucleosides for myelodysplastic syndromes. Oncogene. 2010;7:433–44.

    Google Scholar 

  2. Tsai H-C, Li H, Van Neste L, Cai Y, Robert C, Rassool FV, et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell. 2012;21:430–46.

    Article  CAS  Google Scholar 

  3. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162:974–86.

    Article  CAS  Google Scholar 

  4. Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162:961–73.

    Article  CAS  Google Scholar 

  5. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–32.

    Article  CAS  Google Scholar 

  6. Qin T, Jelinek J, Si J, Shu J, Issa J-PJ. Mechanisms of resistance to 5-aza-2’-deoxycytidine in human cancer cell lines. Blood. 2009;113:659–67.

    Article  CAS  Google Scholar 

  7. Sripayap P, Nagai T, Uesawa M, Kobayashi H, Tsukahara T, Ohmine K, et al. Mechanisms of resistance to azacitidine in human leukemia cell lines. Exp Hematol. 2014;42:294–306.e2.

    Article  CAS  Google Scholar 

  8. Valencia A, Masala E, Rossi A, Martino A, Sanna A, Buchi F, et al. Expression of nucleoside-metabolizing enzymes in myelodysplastic syndromes and modulation of response to azacitidine. Leukemia. 2014;28:621–8.

    Article  CAS  Google Scholar 

  9. Unnikrishnan A, Papaemmanuil E, Beck D, Deshpande NP, Verma A, Kumari A, et al. Integrative genomics identifies the molecular basis of resistance to azacitidine therapy in myelodysplastic syndromes. Cell Rep. 2017;20:572–85.

    Article  CAS  Google Scholar 

  10. Cheng JX, Chen L, Li Y, Cloe A, Yue M, Wei J, et al. RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat Commun. 2018;2018:1–16.

    Google Scholar 

  11. Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N, et al. a comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS ONE. 2010;5:e9001.

    Article  Google Scholar 

  12. Sebert M, Renneville A, Bally C, Peterlin P, Beyne-Rauzy O, Legros L, et al. A phase II study of guadecitabine in higher-risk myelodysplastic syndrome and low blast count acute myeloid leukemia after azacitidine failure. Haematologica. 2019;104:1565–71.

    Article  CAS  Google Scholar 

  13. Roboz GJ, Döhner H, Gobbi M, Kropf PL, Mayer J, Krauter J, et al. Results from a global randomized phase 3 study of guadecitabine (G) vs treatment choice (TC) in 815 patients with treatment naïve (TN) AML unfit for intensive chemotherapy (IC) ASTRAL-1 study: analysis by Number of cycles. Blood. 2019;134:2591–1.

    Article  Google Scholar 

  14. Issa JPJ, Roboz G, Rizzieri D, Jabbour E, Stock W, O’Connell C, et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 2015;16:1099–110.

    Article  CAS  Google Scholar 

  15. Gu X, Tohme R, Tomlinson B, Hasipek M, Durkin L, Schuerger C, et al. Resistance to decitabine and 5-azacytidine emerges from adaptive responses of the pyrimidine metabolism network. bioRxiv 2020.02.20.958405; https://doi.org/10.1101/2020.02.20.958405.

Download references

Acknowledgements

This work was supported by a grant in aid from the Cancer Council of Victoria to JS and LMK. LMK was supported by a fellowship from the Victorian Cancer Agency, JS was supported by a fellowship from the Australian Medical Research Future Fund, RWJ was supported by a fellowship from the National Health and Medical Research Council of Australia and EG was supported by the Australian Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev M. Kats.

Ethics declarations

Conflict of interest

The laboratory of JS has received research funding from Astex Pharmaceuticals. JS, LMK and RWJ served on the scientific advisory board of Celgene Corp.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruber, E., Franich, R.L., Shortt, J. et al. Distinct and overlapping mechanisms of resistance to azacytidine and guadecitabine in acute myeloid leukemia. Leukemia 34, 3388–3392 (2020). https://doi.org/10.1038/s41375-020-0973-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0973-z

This article is cited by

Search

Quick links