Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple myeloma, gammopathies

miR-21 antagonism abrogates Th17 tumor promoting functions in multiple myeloma

Abstract

Multiple myeloma (MM) is tightly dependent on inflammatory bone marrow microenvironment. IL-17 producing CD4+ T cells (Th17) sustain MM cells growth and osteoclasts-dependent bone damage. In turn, Th17 differentiation relies on inflammatory stimuli. Here, we investigated the role of miR-21 in Th17-mediated MM tumor growth and bone disease. We found that early inhibition of miR-21 in naive T cells (miR-21i-T cells) impaired Th17 differentiation in vitro and abrogated Th17-mediated MM cell proliferation and osteoclasts activity. We validated these findings in NOD/SCID-g-NULL mice, intratibially injected with miR-21i-T cells and MM cells. A Pairwise RNAseq and proteome/phosphoproteome analysis in Th17 cells demonstrated that miR-21 inhibition led to upregulation of STAT-1/-5a-5b, STAT-3 impairment and redirection of Th17 to Th1/Th2 like activated/polarized cells. Our findings disclose the role of miR-21 in pathogenic Th17 activity and open the avenue to the design of miR-21-targeting strategies to counteract microenvironment dependence of MM growth and bone disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MMTh17 express higher levels of miR-21 and RANKL in the presence of active BD.
Fig. 2: miR-21 suppression by miR-21 inhibitor impairs Th17 differentiation in vitro.
Fig. 3: Co-culture of MM cells and activated naïve CD4+ T cells transfected by electroporation with miR-21i impairs both Th17 differentiation and tumor growth in vitro.
Fig. 4: Th17 derived from activated naïve CD4+ T cells transfected by electroporation with miR-21i fail to support OCL mediated bone resorption in vitro.
Fig. 5: In vivo MM tumor growth is delayed in the presence of activated naïve CD4+ T cells transfected by electroporation with miR-21i.
Fig. 6: RNAseq analysis of in vitro Th17 derived from activated naïve CD4+ T cells transfected by electroporation with miR-21i or SC.
Fig. 7: Th cell paths in the miR-21i/-SC-Th17 upon TH17 differentiating cytokins.

Similar content being viewed by others

References

  1. Manier S, Sacco A, Leleu X, Ghobrial IM, Roccaro AM. Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012;2012:1–5.

    Article  CAS  Google Scholar 

  2. Terpos E, Ntanasis-Stathopoulos I, Dimopoulos MA. Myeloma bone disease: from biology findings to treatment approaches. Blood. 2019;133:1534–9.

    Article  CAS  PubMed  Google Scholar 

  3. Prabhala RH, Fulciniti M, Pelluru D, Rashid N, Nigroiu A, Nanjappa P, et al. Targeting IL-17A in multiple myeloma: a potential novel therapeutic approach in myeloma. Leukemia. 2016;30:379–89.

    Article  CAS  PubMed  Google Scholar 

  4. Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK, Nanjappa P, Song W, et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood. 2010;115:5385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dhodapkar KM, Barbuto S, Matthews P, Kukreja A, Mazumder A, Vesole D, et al. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma. Blood. 2008;112:2878–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rivollier A, Mazzorana M, Tebib J, Piperno M, Aitsiselmi T, Rabourdin-Combe C, et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood. 2004;104:4029–37.

    Article  CAS  PubMed  Google Scholar 

  7. Wakkach A, Mansour A, Dacquin R, Coste E, Jurdic P, Carle GF, et al. Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts. Blood. 2008;112:5074–83.

    Article  CAS  PubMed  Google Scholar 

  8. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Investig. 1999;103:1345–52.

    Article  CAS  PubMed  Google Scholar 

  9. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203:2673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lawson MA, McDonald MM, Kovacic N, Khoo HW, Terry RL, Down J, et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun. 2015;6:8983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rossi M, Amodio N, Di Martino MT, Tagliaferri P, Tassone P, Cho WC. MicroRNA and multiple myeloma: from laboratory findings to translational therapeutic approaches. Curr Pharm Biotechnol. 2014;15:459–67.

    Article  CAS  PubMed  Google Scholar 

  12. Davidson-Moncada J, Papavasiliou FN, Tam W. MicroRNAs of the immune system: roles in inflammation and cancer. Ann NY Acad Sci. 2010;1183:183–94.

    Article  CAS  PubMed  Google Scholar 

  13. Rossi M, Tagliaferri P, Tassone P. Emerging role of MicroRNAs in the pathophysiology of immune system. Immunodeficiency. 2012. ISBN: 978-953-51-0791-0; https://doi.org/10.5772/2994.

  14. Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermüller J, Kretzschmar AK, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007;110:1330–3.

    Article  PubMed  CAS  Google Scholar 

  15. Leone E, Morelli E, Di Martino MT, Amodio N, Foresta U, Gullà A, et al. Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth. Clin Cancer Res. 2013;19:2096–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pitari MR, Rossi M, Amodio N, Botta C, Morelli E, Federico C, et al. Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts. Oncotarget. 2015;6:27343–58.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis. Blood. 2011;117:3648–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murugaiyan G, da Cunha AP, Ajay AK, Joller N, Garo LP, Kumaradevan S, et al. MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Investig. 2015;125:1069–80.

    Article  PubMed  Google Scholar 

  19. Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L, et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity. 2010;32:605–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq formarker-free decomposition of tissues into cell types. Science. 2014;343:776–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Monticelli S, Zielinski CE. MicroRNA expression profiling of highly purified CD4+ human T cell subsets, array express-repository, V1; 2012. https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-33946.

  22. Rajkumar SV. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91:719–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castro G, Liu X, Ngo K, De Leon-Tabaldo A, Zhao S, Luna-Roman R, et al. ROR gamma t and ROR alpha signature genes in human Th17 cells. PLoS ONE. 2017;12:e0181868.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Giuliani N, Colla S, Sala R, Moroni M, Lazzaretti M, La Monica S, et al. Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood. 2002;100:4615–21.

    Article  CAS  PubMed  Google Scholar 

  25. O’Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity. 2008;28:477–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. O’Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 2012;36:542–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011;12:247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Agashe VV, Jankowska-Gan E, Keller M, Sullivan JA, Haynes LD, Kernien JF, et al. Leukocyte-associated-Ig-like receptor 1 inhibits Th1 responses but is required for natural and induced monocyte-dependent Th17 responses. J Immunol. 2018;201:772–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ka Jung J, Mi Jin L, Dong Chul S, Woo MY, Kyongmin K, Sun P. Identification of CCL1 as a gene differentially expressed in CD4+ T cells expressing TIM-3. Immune Netw. 2011;11:203–9.

    Article  Google Scholar 

  30. Kroczek AL, Hartung E, Gurka S, Becker M, Reeg N, Mages HW, et al. Structure-function relantionship of xcl-1 used for in vivo targeting of antigen into xcr1+ dendritic cells. Front Immunol. 2018;9:2806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meka RR, Venkatesha SH, Dudics S, Akharya B, Moudgil KD. IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmune Rev. 2015;14:1131–41.

    Article  CAS  Google Scholar 

  32. Cibrian D, Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017;47:946–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeffery LE, Qureshi OS, Gardner D, Hou TZ, Briggs Z, Soskic B, et al. Vitamin D antagonizes the suppressive effect of inflammatory cytokines on CTLA-4 expression and regulatory function. PLoS ONE. 2014;143:142.

    Google Scholar 

  34. Sandoval Montes C, Santos-Argumedo L. CD38 is expressed selectively during the activation of a subset of mature T cells with reduced proliferation but improved potential to produce cytokines. J Leukoc Biol. 2005;77:513–21.

    Article  CAS  PubMed  Google Scholar 

  35. Hu D, Notarbartolo S, Croonenborghs, Patel B, Cialic R, Yang TH, et al. Trascriptional signature of human pro-inflammatory Th17 cells identifies reduced IL-10 gene expression in multiple sclerosis. Nat Commun. 2017;8:1600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Durant L, Watfrod WT, Ramos HL, Vahedi G, Wei L, Takahashi H, et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity. 2010;32:605–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100:655–69.

    Article  CAS  PubMed  Google Scholar 

  38. Powell MD, Read KA, Sreekumar BK, Oestreich KJ. Ikaros zinc finger transcription factors: regulators of cytokine signaling pathways and CD4+ T helper cell differentiation. Front Immunol. 2019;10:1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seif F, Koshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal. 2017;15:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lee YK, Musaka R, Hatton RD, Weaver CT. Developmental plasticity of Th17 and T reg cells. Curr Opin Immunol. 2009;21:274–80.

    Article  CAS  PubMed  Google Scholar 

  41. Mazzoni A, Santarlasci V, Maggi L, Capone M, Rossi MC, Querci V, et al. Demethylation of the RORC2 and IL17A in human CD4+ T lymphocytes define Th17 origin of non classic Th1 cells. J Immunol. 2015;194:3116–26.

    Article  CAS  PubMed  Google Scholar 

  42. Amodio N, Rossi M, Raimondi L, Pitari MR, Botta C, Tagliaferri P, et al. miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget. 2015;6:12837–61.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brandmaier A, Hou SQ, Demaria S, Formenti SC, Shen WH. PTEN at the interface of immune tolerance and tumor suppression. Front Biol. 2017;12:163–74.

    Article  Google Scholar 

  44. Carabia J, Carpio C, Abrisqueta P, Jimenez I, Purroy N, Calpe E, et al. Microenvironment regulates the expression of miR-21 and tumor suppressor genes PTEN, PIAS3 and PDCD4 through ZAP-70 in chronic lymphocytic leukemia. Sci Rep. 2017;7:12262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Dan L, Patenia R, Roza N, Molldrem JJ, Champlin R, Ma Q. Ibrutinib treatment modulates T cell activation and polarization in immune response. Blood. 2015;126:3435.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Italian Association for Cancer Research (AIRC), PI: PT. “Special Program Molecular Clinical Oncology - 5 per mille” no. 9980, 2010/15 and its Extension Program 2016/17 no. 9980 and “Innovative Immunotherapeutic Treatments of Human Cancer” Multi Unit Regional No. 16695 (co-financed by AIRC and the CARICAL foundation), 2015/18; PI: PT.

Author information

Authors and Affiliations

Authors

Contributions

MR designed research, analyzed data, and wrote the paper; EA performed research, analyzed data, and wrote the paper; CB performed research, analyzed data and wrote the paper; MEGC performed research and analyzed data; SS performed research; DC analyzed data; CR analyzed data; MG performed research, contributed analytical tools and analyzed data; DT performed research and analyzed data; FC performed research; PC performed research; BB performed research; MI performed research; NP performed research; DS performed research; MA analyzed data; NA analyzed and critically revised data; MTDM analyzed data; BP contributed analytical tools, analyzed, and critically revised data and paper; PTagliaferri and PTassone critically revised data and wrote the paper.

Corresponding author

Correspondence to Marco Rossi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, M., Altomare, E., Botta, C. et al. miR-21 antagonism abrogates Th17 tumor promoting functions in multiple myeloma. Leukemia 35, 823–834 (2021). https://doi.org/10.1038/s41375-020-0947-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0947-1

This article is cited by

Search

Quick links