Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiple myeloma gammopathies

Development of CAR-T cell therapies for multiple myeloma

Abstract

Currently available data on chimeric antigen receptor (CAR)-T cell therapy has demonstrated efficacy and manageable toxicity in heavily pretreated multiple myeloma (MM) patients. The CAR-T field in MM is rapidly evolving with >50 currently ongoing clinical trials across all phases, different CAR-T design, or targets. Most of the CAR-T trials are performed in China and the United States, while European centers organize or participate in only a small fraction of current clinical investigations. Autologous CAR-T cell therapy against B cell maturation antigen shows the best evidence of efficacy so far but main issues remain to be addressed: duration of response, longer follow-up, prolonged cytopenia, patients who may benefit the most such as those with extramedullary disease, outcome prediction, and the integration of CAR-T cell therapy within the MM treatment paradigm. Other promising targets are, i.a.,: CD38, SLAMF7/CS1, or GPRC5D. Although no product has been approved to date, cost and production time for autologous products are expected to be the main obstacles for broad use, for which reason allogeneic CAR-T cells are currently explored. However, the inherent risk of graft-versus-host disease requires additional modification which still need to be validated. This review aims to present the current status of CAR-T cell therapy in MM with an overview on current targets, designs, and stages of CAR-T cell development. Main challenges to CAR-T cell therapy will be highlighted as well as strategies to structurally improve the CAR-T cell product, and thereby its efficacy and safety. The need for comparability of the most promising therapies will be emphasized to balance risks and benefits in an evidence-based but personalized approach to further improve outcome of patients with MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Number of currently ongoing CAR-T cell trials.

Similar content being viewed by others

References

  1. Moreau P, San Miguel J, Sonneveld P, Mateos MV, Zamagni E, Avet-Loiseau H, et al. Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann Oncol. 2017;28(Suppl 4):iv52–61.

    CAS  PubMed  Google Scholar 

  2. McCarthy PL, Holstein SA, Petrucci MT, Richardson PG, Hulin C, Tosi P, et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol. 2017;35:3279–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:754–66.

    CAS  PubMed  Google Scholar 

  4. Dimopoulos MA, Dytfeld D, Grosicki S, Moreau P, Takezako N, Hori M, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med. 2018;379:1811–22.

    CAS  PubMed  Google Scholar 

  5. Moreau P, Attal M, Hulin C, Arnulf B, Belhadj K, Benboubker L, et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet. 2019;394:29–38.

    CAS  PubMed  Google Scholar 

  6. Kumar SK, Dimopoulos MA, Kastritis E, Terpos E, Nahi H, et al. Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: a multicenter IMWG study. Leukemia. 2017;31:2443–8.

    CAS  PubMed  Google Scholar 

  7. Touzeau C, Moreau P. How I treat extramedullary myeloma. Blood. 2016;127:971–6.

    CAS  PubMed  Google Scholar 

  8. Malek E, El-Jurdi N, Kröger N, de Lima M. Allograft for myeloma: examining pieces of the jigsaw puzzle. Front Oncol. 2017;7:287.

    PubMed  PubMed Central  Google Scholar 

  9. Sobh M, Michallet M, Gahrton G, Iacobelli S, van Biezen A, Schönland S, et al. Allogeneic hematopoietic cell transplantation for multiple myeloma in Europe: trends and outcomes over 25 years. A study by the EBMT Chronic Malignancies Working Party. Leukemia. 2016;30:2047–54.

    CAS  PubMed  Google Scholar 

  10. Kröger N, Perez-Simon JA, Myint H, Klingemann H, Shimoni A, Nagler A, et al. Relapse to prior autograft and chronic graft-versus-host disease are the strongest prognostic factors for outcome of melphalan/fludarabine-based dose-reduced allogeneic stem cell transplantation in patients with multiple myeloma. Biol Blood Marrow Transpl. 2004;10:698–708.

    Google Scholar 

  11. Gröger M, Gagelmann N, Wolschke C, von Pein UM, Klyuchnikov E, Christopeit M, et al. Long-term results of prophylactic donor lymphocyte infusions for patients with multiple myeloma after allogeneic stem cell transplantation. Biol Blood Marrow Transpl. 2018;24:1399–405.

    Google Scholar 

  12. Topp MS, Duell J, Zugmaier G, Attal M, Moreau P, Langer C et al. Anti-B-cell maturation antigen BiTE molecule AMG 420 induces responses in multiple myeloma. J Clin Oncol. 2020;38:775–83.

    CAS  PubMed  Google Scholar 

  13. Lonial S, Lee HC, Badros A, Trudel S, Nooka AK, Chari A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020;21:207–21.

    CAS  PubMed  Google Scholar 

  14. Minnie SA, Hill GR. Immunotherapy of multiple myeloma. J Clin Invest. 2020;130:1565–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378:449–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377:2545–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Turtle CJ, Hay KA, Hanafi L-A, Li D, Cherian S, Chen X, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol. 2017;35:3010–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mikkilineni L, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood. 2017;130:2594–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Atanackovic D, Radhakrishnan SV, Bhardwaj N, Luetkens T. Chimeric antigen receptor (CAR) therapy for multiple myeloma. Br J Haematol. 2016;172:685–98.

    PubMed  Google Scholar 

  21. Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Disco. 2013;3:388–98.

    CAS  Google Scholar 

  22. Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 2013;10:267–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Maus MV, Grupp SA, Porter DL, June CH. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood. 2014;123:2625–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy. Nat Rev Cancer. 2013;13:525–41.

    CAS  PubMed  Google Scholar 

  25. Holzinger A, Abken H. CAR T Cells: a snapshot on the growing options to design a CAR. Hemasphere. 2019;3:e172.

    PubMed  PubMed Central  Google Scholar 

  26. Ramos CA, Savoldo B, Torrano V, Ballard B, Zhang H, Dakhova O, et al. Clinical responses with T lymphocytes targeting malignancy-associated k light chains. J Clin Invest. 2016;126:2588–96.

    PubMed  PubMed Central  Google Scholar 

  27. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121:1822–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Turtle CJ, Hanafi L-A, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD81 and CD41 CD19- specific chimeric antigen receptor–modified T cells. Sci Transl Med. 2016;8:355ra116.

    PubMed  PubMed Central  Google Scholar 

  29. Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev. 2014;257:83–90.

    CAS  PubMed  Google Scholar 

  30. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015;15:1145–54.

    CAS  PubMed  Google Scholar 

  31. Boyiadzis MM, Dhodapkar MV, Brentjens RJ, Kochenderfer JN, Neelapu SS, Maus MV, et al. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. J Immunother Cancer. 2018;6:137.

    PubMed  PubMed Central  Google Scholar 

  32. Fehse B, Badbaran A, Berger C, Sonntag T, Riecken K, Geffken M, et al. Digital PCR assays for precise quantification of CD19-CAR-T cells after treatment with axicabtagene ciloleucel. Mol Ther Methods Clin Dev. 2020;16:172–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.

    PubMed  Google Scholar 

  34. Hajek R, Okubote SA, Svachova H. Myeloma stem cell concepts, heterogeneity and plasticity of multiple myeloma. Br J Haematol. 2013;163:551–64.

    PubMed  Google Scholar 

  35. Paíno T, Paiva B, Sayagués JM, Mota I, Carvalheiro T, Corchete LA, et al. Phenotypic identification of subclones in multiple myeloma with different chemoresistant, cytogenetic and clonogenic potential. Leukemia. 2015;29:1186–94.

    PubMed  Google Scholar 

  36. Cho SF, Anderson KC, Tai YT. Targeting B cell maturation antigen (BCMA) in multiple myeloma: potential uses of BCMA-based immunotherapy. Front Immunol. 2018;9:1821.

    PubMed  PubMed Central  Google Scholar 

  37. D’Agostino M, Raje N. Anti-BCMA CAR T-cell therapy in multiple myeloma: can we do better? Leukemia. 2020;34:21–34.

    PubMed  Google Scholar 

  38. Susanibar Adaniya SP, Cohen AD, Garfall AL. Chimeric antigen receptor T cell immunotherapy for multiple myeloma: a review of current data and potential clinical applications. Am J Hematol. 2019;94:S28–33.

    CAS  PubMed  Google Scholar 

  39. Gagelmann N, Ayuk F, Atanackovic D, Kröger N. B cell maturation antigen-specific chimeric antigen receptor T cells for relapsed or refractory multiple myeloma: a meta-analysis. Eur J Haematol. 2019. https://doi.org/10.1111/ejh.13380.

  40. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M, Lam N, et al. T cells genetically modified to express an anti-B cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol. 2018;36:2267–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu J, Chen L-J, Yang S-S, Sun Y, Wu W, Liu YF, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci USA. 2019;116:9543–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Raje N, Berdeja J, Lin YI, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380:1726–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 2019;130:2210–21.

    Google Scholar 

  45. Zhao W-H, Liu J, Wang B-Y, Chen YX, Cao XM, Yang Y, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol. 2018;11:141.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Green DJ, Pont M, Sather BD, Cowan AJ, Turtle JC, Till BG, et al. Fully human Bcma targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma. Blood. 2018;132(Suppl 1):1011–11.

    Google Scholar 

  47. Mikkilineni L, Manasanch EE, Norris Lam N, Vanasse D, Brudno JN, Maric I, et al. T cells expressing an anti-B-cell maturation antigen (BCMA) chimeric antigen receptor with a fully-human heavy-chain-only antigen recognition domain induce remissions in patients with relapsed multiple myeloma. Blood. 2019;134 Suppl 1:3230.

    Google Scholar 

  48. Bladé J, Fernández de Larrea C, Rosiñol L, Cibeira MT, Jiménez R, Powles R. Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol. 2011;29:3805–12.

    PubMed  Google Scholar 

  49. Gagelmann N, Eikema D-J, Iacobelli S, Koster L, Nahi H, Stoppa AM, et al. Impact of extramedullary disease in patients with newly diagnosed multiple myeloma undergoing autologous stem cell transplantation: a study from the chronic malignancies working party of the EBMT. Haematologica. 2018;103:890–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gagelmann N, Eikema DJ, Koster L, Caillot D, Pioltelli P, Lleonart JB, et al. Tandem autologous stem cell transplantation improves outcomes in newly diagnosed multiple myeloma with extramedullary disease and high-risk cytogenetics: a study from the chronic malignancies working party of the European society for blood and marrow transplantation. Biol Blood Marrow Transpl. 2019;25:2134–42.

    CAS  Google Scholar 

  51. Jiménez-Segura R, Granell M, Gironella M, Abella E, García-Guiñón A, Oriol A, et al. Pomalidomide-dexamethasone for treatment of soft-tissue plasmacytomas in patients with relapsed/refractory multiple myeloma. Eur J Haematol. 2019;102:389–94.

    PubMed  Google Scholar 

  52. Jullien M, Trudel S, Tessoulin B, Mahé B, Dubruille V, Blin N, et al. Single-agent daratumumab in very advanced relapsed and refractory multiple myeloma patients: a real-life single-center retrospective study. Ann Hematol. 2019;98:1435–40.

    CAS  PubMed  Google Scholar 

  53. Garfall AL, Maus MV, Hwang WT, Lacey SF, Mahnke YD, Melenhorst JJ, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373:1040–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Quarona V, Zaccarello G, Chillemi A, Brunetti E, Singh VK, Ferrero E, et al. CD38 and CD157: a long journey from activation markers to multifunctional molecules. Cytom B Clin Cytom. 2013;84:207–17.

    Google Scholar 

  55. Drent E, Themeli M, Poels R, de Jong-Korlaar R, Yuan H, de Bruijn J, et al. A rational strategy for reducing on-target off-tumor effects of CD38-chimeric antigen receptors by affinity optimization. Mol Ther. 2017;25:1946–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Straathof KC, Pulè MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, et al. An inducible caspase 9 safety switch for T-cell therapy. Blood. 2005;105:4247–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Attal M, Richardson PG, Rajkumar SV, San-Miguel J, Beksac M, Spicka I, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet. 2019;394:2096–107.

    CAS  PubMed  Google Scholar 

  58. Syed YY. Daratumumab: a review in combination therapy for transplant-ineligible newly diagnosed multiple myeloma. Drugs. 2019;79:447–54.

    CAS  PubMed  Google Scholar 

  59. Drent E, Groen RW, Noort WA, Themeli M, Lammerts van Bueren JJ, Parren PW, et al. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica. 2016;101:616–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hambach J, Riecken K, Cichutek S, Schütze K, Albrecht B, Petry K, et al. Targeting CD38-expressing multiple myeloma and burkitt lymphoma cells in vitro with nanobody-based chimeric antigen receptors (Nb-CARs). Cells. 2020;9:E321.

    PubMed  Google Scholar 

  61. O’Connell FP, Pinkus JL, Pinkus GS. CD138 (syndecan-1), a plasma cell marker immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am J Clin Pathol. 2004;121:254–63.

    PubMed  Google Scholar 

  62. Kawano Y, Fujiwara S, Wada N, Izaki M, Yuki H, Okuno Y, et al. Multiple myeloma cells expressing low levels of CD138 have an immature phenotype and reduced sensitivity to lenalidomide. Int J Oncol. 2012;41:876–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jagannath S, Heffner LT Jr, Ailawadhi S, Munshi NC, Zimmerman TM, Rosenblatt J, et al. Indatuximab ravtansine (BT062) monotherapy in patients with relapsed and/or refractory multiple myeloma. Clin Lymphoma Myeloma Leuk. 2019;19:372–80.

    PubMed  Google Scholar 

  64. Sidana S, Shah N. CAR T-cell therapy: is it prime time in myeloma? Hematol Am Soc Hematol Educ Program. 2019;2019:260–5.

    Google Scholar 

  65. Chu J, He S, Deng Y, Zhang J, Peng Y, Hughes T, et al. Genetic modification of T cells redirected toward CS1 enhances eradication of myeloma cells. Clin Cancer Res. 2014;20:3989–4000.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14:2775–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Richardson PG, Jagannath S, Moreau P, Jakubowiak AJ, Raab MS, Facon T, et al. Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: final phase 2 results from the randomised, open-label, phase 1b-2 dose- escalation study. Lancet Haematol. 2015;2:e516–27.

    PubMed  PubMed Central  Google Scholar 

  68. Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, Spicka I, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373:621–31.

    CAS  PubMed  Google Scholar 

  69. Gogishvili T, Danhof S, Pommersberger S, Rydzek J, Schreder M, Brede C, et al. SLAMF7-CAR T cells eliminate myeloma and confer selective fractricide of SLAMF7+ normal lymphocytes. Blood. 2017;130:2838–47.

    CAS  PubMed  Google Scholar 

  70. Gao Y, Wang, Yan H, Zeng J, Ma S, Niu Y, et al. Comparative transcriptome analysis of fetal skin reveals key genes related to hair follicle morphogenesis in cashmere goats. PLoS ONE. 2016;11:e0151118.

    PubMed  PubMed Central  Google Scholar 

  71. Atamaniuk J, Gleiss A, Porpaczy E, Kainz B, Grunt TW, Raderer M, et al. Overexpression of G protein-coupled receptor 5D in the bone marrow is associated with poor prognosis in patients with multiple myeloma. Eur J Clin Investig. 2012;42:953–60.

    CAS  Google Scholar 

  72. Smith EL, Harrington K, Staehr M, Masakayan R, Jones J, Long TJ, et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci Transl Med. 2019;11:eaau7746.

    PubMed  PubMed Central  Google Scholar 

  73. Smith EL, Staehr M, Masakayan R, Tatake IJ, Purdon TJ, Wang X, et al. Development and evaluation of an optimal human single-chain variable fragment-derived BCMA-targeted CAR T cell vector. Mol Ther. 2018;26:1447–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pillarisetti K, Edavettal S, Mendonça M, Li Y, Tornetta M, Babich A, et al. A T-cell-redirecting bispecific G-protein-coupled receptor class 5 member D x CD3 antibody to treat multiple myeloma. Blood. 2020;135:1232–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Guillerey C, Ferrari de Andrade L, Vuckovic S, Miles K, Ngiow SF, Yong MC, et al. Immunosurveillance and therapy of multiple myeloma are CD226 dependent. J Clin Invest. 2015;125:2077–89.

    PubMed  PubMed Central  Google Scholar 

  76. Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, Pende D, et al. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood. 2005;105:251–8.

    CAS  PubMed  Google Scholar 

  77. El-Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan AW, et al. The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res. 2007;67:8444–9.

    CAS  PubMed  Google Scholar 

  78. Baumeister SH, Murad J, Werner L, Daley H, Trebeden-Negre H, Gicobi JK, et al. Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol Res. 2019;7:100–12.

    CAS  PubMed  Google Scholar 

  79. Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020; https://doi.org/10.1038/s41573-019-0051-2.

  80. Sommer C, Boldajipour B, Kuo TC, Bentley T, Sutton J, Chen A, et al. Preclinical evaluation of allogeneic CAR T cells targeting BCMA for the treatment of multiple myeloma. Mol Ther. 2019;27:1126–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mathur R, Zhang Z, He J, Galetto R, Gouble A, Chion-Sotinel I, et al. Universal SLAMF7-specific CAR T-cells as treatment for multiple myeloma. Blood. 2017;130(Suppl 1):502.

    Google Scholar 

  82. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hussain W, Mahmood T, Hussain J, Ali N, Shah T, Qayyum S, et al. CRISPR/Cas system: a game changing genome editing technology, to treat human genetic diseases. Gene. 2019;685:70–5.

    CAS  PubMed  Google Scholar 

  84. Majzner RG, Mackall CL. Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 2019;25:1341–55.

    CAS  PubMed  Google Scholar 

  85. Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res. 2013;1:26–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res. 2013;19:2048–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Alabanza L, Pegues M, Geldres C, Shi V, Wiltzius JJW, Sievers SA, et al. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol Ther. 2017;25:2452–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23:1126–36.

    CAS  PubMed  Google Scholar 

  89. Lam N, Trinklein ND, Buelow B, Patterson GH, Ojha N, Kochenderfer JN. Anti-BCMA chimeric antigen receptors with fully human heavy-chain-only antigen recognition domains. Nat Commun. 2020;11:283.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Disco. 2018;8:1219–26.

    CAS  Google Scholar 

  91. Hamieh M, Dobrin A, Cabriolu A, van der Stegen SJC, Giavridis T, Mansilla-Soto J, et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature. 2019;568:112–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yan Z, Cao J, Cheng H, Qiao J, Zhang H, Wang Y, et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial. Lancet Haematol. 2019;6:e521–29.

    PubMed  Google Scholar 

  93. Garfall AL, Cohen AD, Lacey SF, Tian L, Hwang WT, Vogel DT, et al. Combination anti-Bcma and anti-CD19 CAR T cells as consolidation of response to prior therapy in multiple myeloma. Blood. 2019;134(Suppl 1):1863.

    Google Scholar 

  94. Shi X, Yan L, Shang J, Kang L, Zhou J, Jin S, et al. tandom autologous transplantation and combined infusion of CD19 and Bcma-specific chimeric antigen receptor T cells for high risk MM: initial safety and efficacy report from a clinical pilot study. Blood. 2018;132(Suppl 1):1009.

    Google Scholar 

  95. Li C, Mei H, Hu Y, Guo T, Liu L, Jiang H, et al. A bispecific CAR-T cell therapy targeting Bcma and CD38 for relapsed/refractory multiple myeloma: updated results from a phase 1 dose-climbing trial. Blood. 2019;134(Supplement_1):930.

    Google Scholar 

  96. Papathanasiou MM, Stamatis C, Lakelin M, Farid S, Titchener-Hooker N, Shah N. Autologous CAR T-cell therapies supply chain: challenges and opportunities? Cancer Gene Ther. 2020; https://doi.org/10.1038/s41417-019-0157-z.

  97. Blankenship K. Novartis’ new cell therapy facility could ease manufacturing squeeze for CAR-T med Kymriah. https://www.fiercepharma.com/pharma/new-maryland-facility-to-boost-kite-s-car-t-manufacturing-ability. Accessed 16 April 2020.

  98. Susarla N, Karimi IA. Integrated supply chain planning for multinational pharmaceutical enterprises. Comput Chem Eng. 2012;42:168–77.

    CAS  Google Scholar 

  99. Munshi NC, Anderson LD, Shah N, Jagannath S, Berdeja JG, Lonial S, et al. Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell therapy, in patients with relapsed and refractory multiple myeloma (RRMM): Initial KarMMa results. J Clin Oncol. 2020;38(Suppl):8503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolaus Kröger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagelmann, N., Riecken, K., Wolschke, C. et al. Development of CAR-T cell therapies for multiple myeloma. Leukemia 34, 2317–2332 (2020). https://doi.org/10.1038/s41375-020-0930-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0930-x

This article is cited by

Search

Quick links