Clonal myelopoiesis in the UK Biobank cohort: ASXL1 mutations are strongly associated with smoking


We sought to determine the significance of myeloid clonal hematopoiesis (CH) in the UK Biobank cohort (n = 502,524, median age = 58 years). Utilizing SNP array (n = 486,941) and whole exome sequencing data (n = 49,956), we identified 1166 participants with myeloid CH, defined by myeloid-associated mosaic chromosome abnormalities (mCA) and/or likely somatic driver mutations in DNMT3A, TET2, ASXL1, JAK2, SRSF2, or PPM1D. Myeloid CH increased by 1.1-fold per annum (myeloid mCA, P = 1.57 × 10−38; driver mutations, P = 5.89 × 10−47). Genome-wide association analysis identified two distinct signals within TERT that predisposed to myeloid CH, plus a weaker signal corresponding to the JAK2 46/1 haplotype. Specific subtypes of myeloid CH were associated with several blood features and clinical phenotypes, including TET2 mutations and chronic obstructive pulmonary disease. Smoking history was significantly associated with myeloid CH: 53% of myeloid CH cases were smokers compared to 44% of controls (P = 3.38 × 10−6), a difference principally due to current (OR = 1.10; P = 6.14 × 10−6) rather than past smoking (P = 0.08). Breakdown of CH by specific mutation type revealed that ASXL1 loss of function mutations were most strongly associated with current smoking status (OR = 1.07; P = 1.92 × 10−5), and the only abnormality associated with past smoking (OR = 1.04; P = 0.0026). We suggest that the inflammatory environment induced by smoking may promote the outgrowth of ASXL1-mutant clones.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The relationship between clonal hematopoiesis and age.
Fig. 2: Genome-wide association analysis to identify genetic predisposition to myeloid clonal hematopoiesis.


  1. 1.

    Busque L, Mio R, Mattioli J, Brais E, Blais N, Lalonde Y, et al. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood. 1996;88:59–65.

    CAS  Article  Google Scholar 

  2. 2.

    Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S, Hamilou Z, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44:1179.

    CAS  Article  Google Scholar 

  3. 3.

    Xu X, Zhang Q, Luo J, Xing S, Li Q, Krantz SB, et al. JAK2V617F: prevalence in a large Chinese hospital population. Blood. 2007;109:339–42.

    CAS  Article  Google Scholar 

  4. 4.

    Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet. 2012;44:642.

    CAS  Article  Google Scholar 

  5. 5.

    Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B, et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet. 2012;44:651.

    CAS  Article  Google Scholar 

  6. 6.

    Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87.

    Article  Google Scholar 

  7. 7.

    Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT, Jonsdottir I, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130:742–52.

    CAS  Article  Google Scholar 

  8. 8.

    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article  Google Scholar 

  9. 9.

    Acuna-Hidalgo R, Sengul H, Steehouwer M, van de Vorst M, Vermeulen SH, Kiemeney LA, et al. Ultra-sensitive sequencing identifies high prevalence of clonal hematopoiesis-associated mutations throughout adult life. Am J Hum Genet. 2017;101:50–64.

    CAS  Article  Google Scholar 

  10. 10.

    Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7:12484.

    CAS  Article  Google Scholar 

  11. 11.

    Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.

    CAS  Article  Google Scholar 

  12. 12.

    Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21.

    Article  Google Scholar 

  13. 13.

    Buscarlet M, Provost S, Zada YF, Barhdadi A, Bourgoin V, Lépine G, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood. 2017;130:753–62.

    CAS  Article  Google Scholar 

  14. 14.

    Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203.

    CAS  Article  Google Scholar 

  15. 15.

    Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. Genome-wide genetic data on ~500,000 UK Biobank participants. BioRxiv. 2017. https://doi.org/10.1101/166298.

  16. 16.

    Staaf J, Lindgren D, Vallon-Christersson J, Isaksson A, Göransson H, Juliusson G, et al. Segmentation-based detection of allelic imbalance and loss-of-heterozygosity in cancer cells using whole genome SNP arrays. Genome Biol. 2008;9:R136.

    Article  Google Scholar 

  17. 17.

    Van Hout CV, Tachmazidou I, Backman JD, Hoffman JX, Yi B, Pandey A, et al. Whole exome sequencing and characterization of coding variation in 49,960 individuals in the UK Biobank. bioRxiv. 2019. https://doi.org/10.1101/572347.

  18. 18.

    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  Google Scholar 

  19. 19.

    Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    Article  Google Scholar 

  20. 20.

    Hollander M, Wolfe DA, Chicken E. Nonparametric statistical methods, vol. 751. Hoboken, New Jersey: John Wiley & Sons; 2013.

  21. 21.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    CAS  Article  Google Scholar 

  22. 22.

    Millard LA, Davies NM, Gaunt TR, Davey Smith G, Tilling K. Software application profile: PHESANT: a tool for performing automated phenome scans in UK Biobank. Int J Epidemiol. 2017;47:29–35.

    Article  Google Scholar 

  23. 23.

    Therneau TM, Grambsch PM. The Cox model. Modeling survival data: extending the Cox model. New York: Springer; 2000, pp. 39–77.

  24. 24.

    Grolemund G, Wickham H. Dates and times made easy with lubridate. J Stat Softw. 2011;40:1–25.

    Article  Google Scholar 

  25. 25.

    Roman E, Smith A, Appleton S, Crouch S, Kelly R, Kinsey S, et al. Myeloid malignancies in the real-world: Occurrence, progression and survival in the UK’s population-based Haematological Malignancy Research Network 2004–15. Cancer Epidemiol. 2016;42:186–98.

    Article  Google Scholar 

  26. 26.

    McKerrell T, Park N, Moreno T, Grove CS, Ponstingl H, Stephens J, et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 2015;10:1239–45.

    CAS  Article  Google Scholar 

  27. 27.

    Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet. 2009;41:446–9.

    CAS  Article  Google Scholar 

  28. 28.

    Bolton KL, Ptashkin RN, Gao T, Braunstein L, Devlin SM, Kelly D, et al. Oncologic therapy shapes the fitness landscape of clonal hematopoiesis. bioRxiv. 2019. https://doi.org/10.1101/848739.

  29. 29.

    Gillis NK, Ball M, Zhang Q, Ma Z, Zhao Y, Yoder SJ, et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol. 2017;18:112–21.

    Article  Google Scholar 

  30. 30.

    Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A, Jonsson P, et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell. 2017;21:374–82.

    CAS  Article  Google Scholar 

  31. 31.

    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    CAS  Article  Google Scholar 

  32. 32.

    Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N, et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood, J Am Soc Hematol. 2016;128:1121–8.

    CAS  Google Scholar 

  33. 33.

    Oddsson A, Kristinsson S, Helgason H, Gudbjartsson D, Masson G, Sigurdsson A, et al. The germline sequence variant rs2736100_C in TERT associates with myeloproliferative neoplasms. Leukemia. 2014;28:1371–4.

    CAS  Article  Google Scholar 

  34. 34.

    Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K, Leung W, et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun. 2015;6:1–11.

    Article  Google Scholar 

  35. 35.

    Liu N, Guo XH, Liu JP, Cong YS. Role of telomerase in the tumour microenvironment. Clin Exp Pharmacol Physiol. 2019;47:357–64.

    Article  Google Scholar 

Download references


AAZD was supported by Lady Tata International Award; NCPC was supported by Blood Cancer UK.

Author information



Corresponding author

Correspondence to Nicholas C. P. Cross.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dawoud, A.A.Z., Tapper, W.J. & Cross, N.C.P. Clonal myelopoiesis in the UK Biobank cohort: ASXL1 mutations are strongly associated with smoking. Leukemia 34, 2660–2672 (2020). https://doi.org/10.1038/s41375-020-0896-8

Download citation

Further reading