Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acute lymphoblastic leukemia

SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia

Abstract

Folate metabolism enables cell growth by providing one-carbon (1C) units for nucleotide biosynthesis. The 1C units are carried by tetrahydrofolate, whose production by the enzyme dihydrofolate reductase is targeted by the important anticancer drug methotrexate. 1C units come largely from serine catabolism by the enzyme serine hydroxymethyltransferase (SHMT), whose mitochondrial isoform is strongly upregulated in cancer. Here we report the SHMT inhibitor SHIN2 and demonstrate its in vivo target engagement with 13C-serine tracing. As methotrexate is standard treatment for T-cell acute lymphoblastic leukemia (T-ALL), we explored the utility of SHIN2 in this disease. SHIN2 increases survival in NOTCH1-driven mouse primary T-ALL in vivo. Low dose methotrexate sensitizes Molt4 human T-ALL cells to SHIN2, and cells rendered methotrexate resistant in vitro show enhanced sensitivity to SHIN2. Finally, SHIN2 and methotrexate synergize in mouse primary T-ALL and in a human patient-derived xenograft in vivo, increasing survival. Thus, SHMT inhibition offers a complementary strategy in the treatment of T-ALL.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: SHIN2 inhibits SHMT in vitro and in vivo.
Fig. 2: SHIN2 blocks growth of the human T-ALL cell line Molt4 via SHMT inhibition.
Fig. 3: SHIN2 has an antileukemic effect in T-ALL in vivo.
Fig. 4: SHIN2 and methotrexate synergize in Molt4 cells.
Fig. 5: Synergistic in vivo antileukemic effect of SHIN2 and methotrexate in mouse primary leukemia.
Fig. 6: Synergistic in vivo antileukemic effect of SHIN2 and methotrexate in a human patient-derived T-ALL xenograft.
Fig. 7: Methotrexate resistance sensitizes Molt4 cells to SHIN2.

References

  1. Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25:27–42.

    CAS  PubMed  Google Scholar 

  2. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 2014;510:298–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Maddocks ODK, Labuschagne CF, Adams PD, Vousden KH. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol Cell. 2016;61:210–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ducker GS, Chen L, Morscher RJ, Ghergurovich JM, Esposito M, Teng X, et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 2016;23:1140–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012;336:1040–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D, et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 2015;22:861–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 2016;16:650–62.

    CAS  PubMed  Google Scholar 

  8. Labuschagne CF, van den Broek NJF, Mackay GM, Vousden KH, Maddocks ODK. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 2014;7:1248–58.

    CAS  PubMed  Google Scholar 

  9. Fu TF, Schirch V, Rife JP. The role of serine hydroxymethyltransferase isozymes in one-carbon metabolism in MCF-7 cells as determined by 13C NMR. Arch Biochem Biophys. 2001;393:42–50.

    CAS  PubMed  Google Scholar 

  10. Herbig K, Chiang EP, Lee LR, Hills J, Shane B, Stover PJ. Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J Biol Chem. 2002;277:38381–9.

    CAS  PubMed  Google Scholar 

  11. Maddocks ODK, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 2013;493:542–6.

    CAS  Google Scholar 

  12. Garrow TA, Brenner AA, Whitehead VM, Chen XN, Duncan RG, Korenberg JR, et al. Cloning of human cDNAs encoding mitochondrial and cytosolic serine hydroxymethyltransferases and chromosomal localization. J Biol Chem. 1993;268:11910–6.

    CAS  PubMed  Google Scholar 

  13. Girgis S, Nasrallah IM, Suh JR, Oppenheim E, Zanetti KA, Mastri MG, et al. Molecular cloning, characterization and alternative splicing of the human cytoplasmic serine hydroxymethyltransferase gene. Gene. 1998;210:315–24.

    CAS  PubMed  Google Scholar 

  14. Stover PJ, Chen LH, Suh JR, Stover DM, Keyomarsi K, Shane B. Molecular cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyltransferase gene. J Biol Chem. 1997;272:1842–8.

    CAS  PubMed  Google Scholar 

  15. Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM, Manning BD. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science. 2016;351:728–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee GY, Haverty PM, Li L, Kljavin NM, Bourgon R, Lee J, et al. Comparative oncogenomics identifies psmb4 and shmt2 as potential cancer driver genes. Cancer Res. 2014;74:3114–26.

    CAS  PubMed  Google Scholar 

  17. Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun. 2014;5:1–10.

    CAS  Google Scholar 

  18. Ducker GS, Ghergurovich JM, Mainolfi N, Suri V, Jeong SK, Hsin-Jung Li S, et al. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc Natl Acad Sci. 2017;114:11404–9.

    CAS  PubMed  Google Scholar 

  19. Patel H, Di Pietro E, MacKenzie RE. Mammalian fibroblasts lacking mitochondrial NAD+-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase are glycine auxotrophs. J Biol Chem. 2003;278:19436–41.

    CAS  PubMed  Google Scholar 

  20. Litzow MR, Ferrando AA. How I treat T-cell acute lymphoblastic leukemia in adults. Blood. 2015;126:833–41.

    CAS  PubMed  Google Scholar 

  21. Marks DI, Rowntree C. Management of adults with T-cell lymphoblastic leukemia. Blood. 2017;129:1134–42.

    CAS  PubMed  Google Scholar 

  22. Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest. 2012;122:3398–406.

    PubMed  PubMed Central  Google Scholar 

  23. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381:1943–55.

    PubMed  Google Scholar 

  24. Palomero T, Barnes KC, Real PJ, Glade Bender JL, Sulis ML, Murty VV, et al. CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to γ-secretase inhibitors. Leukemia. 2006;20:1279–87.

    CAS  PubMed  Google Scholar 

  25. Herranz D, Ambesi-Impiombato A, Sudderth J, Sánchez-Martín M, Belver L, Tosello V, et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat Med. 2015;21:1182–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. R Core Team. R: a language and environment for statistical computing. 2019. https://www.r-project.org/.

  27. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41:955–61.

    CAS  Google Scholar 

  28. Nikiforov MA, Chandriani S, O’Connell B, Petrenko O, Kotenko I, Beavis A, et al. A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol Cell Biol. 2002;22:5793–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ye J, Fan J, Venneti S, Wan YW, Pawel BR, Zhang J, et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Disco. 2014;4:1406–17.

    CAS  Google Scholar 

  30. Pikman Y, Puissant A, Alexe G, Furman A, Chen LM, Frumm SM, et al. Targeting MTHFD2 in acute myeloid leukemia. J Exp Med. 2016;213:1285–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Weng AP, Ferrando AA, Lee W, Morris JP IV, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.

    CAS  Google Scholar 

  32. Palomero T, Wei KL, Odom DT, Sulis ML, Real PJ, Margolin A, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA. 2006;103:18261–6.

    CAS  PubMed  Google Scholar 

  33. Herranz D, Ambesi-Impiombato A, Palomero T, Schnell SA, Belver L, Wendorff AA, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20:1130–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood. 2017;129:1124–33.

    CAS  PubMed  Google Scholar 

  35. Ma EH, Bantug G, Griss T, Condotta S, Johnson RM, Samborska B, et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 2017;25:345–57.

    CAS  PubMed  Google Scholar 

  36. Chiang MY, Xu L, Shestova O, Histen G, L’Heureux S, Romany C, et al. Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. J Clin Invest. 2008;118:3181–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996;183:2283–91.

    CAS  PubMed  Google Scholar 

  38. Kourtis N, Lazaris C, Hockemeyer K, Balandrán JC, Jimenez AR, Mullenders J, et al. Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat Med. 2018;24:1157–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature. 2014;514:513–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao R, Goldman ID. Resistance to antifolates. Oncogene. 2003;22:7431–57.

    CAS  PubMed  Google Scholar 

  41. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7:e577.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16:494–507.

    CAS  PubMed  Google Scholar 

  43. Chen L, Ducker GS, Lu W, Teng X, Rabinowitz JD. An LC-MS chemical derivatization method for the measurement of five different one-carbon states of cellular tetrahydrofolate. Anal Bioanal Chem. 2017;409:5955–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng Y, Lin TY, Lee G, Paddock MN, Momb J, Cheng Z, et al. Mitochondrial one-carbon pathway supports cytosolic folate integrity in cancer cells. Cell. 2018;175:1546–.e17.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gao X, Sanderson SM, Dai Z, Reid MA, Cooper DE, Lu M, et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature. 2019;572:397–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tibbetts AS, Appling DR. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr. 2010;30:57–81.

    CAS  PubMed  Google Scholar 

  47. Taylor RT, Hanna ML. Folate-dependent enzymes in cultured Chinese hamster ovary cells: Impaired mitochondrial serine hydroxymethyltransferase activity in two additional glycine—auxotroph complementation classes. Arch Biochem Biophys. 1982;217:609–23.

    CAS  PubMed  Google Scholar 

  48. Chasin LA, Feldman A, Konstam M, Urlaub G. Reversion of a Chinese hamster cell auxotrophic mutant. Proc Natl Acad Sci. 1974;71:718–22.

    CAS  PubMed  Google Scholar 

  49. Lin BF, Shane B. Expression of Escherichia coli folylpolyglutamate synthetase in the Chinese hamster ovary cell mitochondrion. J Biol Chem. 1994;269:9705–13.

    CAS  PubMed  Google Scholar 

  50. Titus SA, Moran RG. Retrovirally mediated complementation of the glyB phenotype. Cloning of a human gene encoding the carrier for entry of folates into mitochondria. J Biol Chem. 2000;275:36811–17.

    CAS  PubMed  Google Scholar 

  51. Bertino Göker, Gorlick Li,Banerjee. Resistance mechanisms to methotrexate in tumors. Oncologist. 1996;1:223–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Rabinowitz and Herranz laboratories for helpful discussions. We also thank Adolfo A. Ferrando (Columbia University) for sharing with us the human normal thymus samples used in this study. Work in the laboratory of JDR is supported by US National Institutes of Health (1DP1DK113643 and R01CA163591 to JDR and R00CA215307 to GSD) and the Rutgers Cancer Institute of New Jersey (P30CA072720). JCGC is supported by funding from the European Union’s Horizon 2020 research and innovation program (Marie Sklodowska-Curie grant agreement No 751423). Work in the laboratory of DH is supported by the US National Institutes of Health (R00CA197869 and R01CA236936), a Research Scholar Grant from the American Cancer Society (RSG-19-161-01-TBE), the Alex’s Lemonade Stand Foundation, the Leukemia Research Foundation, the Children’s Leukemia Research Association, the Gabrielle’s Angel Foundation for Cancer Research, and the Rutgers Cancer Institute of New Jersey (P30CA072720). VSD is funded by the New Jersey Commission on Cancer Research (DCHS19PPC008).

Author information

Authors and Affiliations

Authors

Contributions

JDR, DH, HK, JCGC, OL, and GSD conceived the study. JCGC, OL, GSD, JMG, XX, and VSD conducted the experiments. SM and SI generated the human T-ALL xenograft. HK and GSD designed SHIN2. HK designed and oversaw the chemical synthesis strategy. JDR, DH, JCGC, and OL wrote the paper.

Corresponding authors

Correspondence to Daniel Herranz or Joshua D. Rabinowitz.

Ethics declarations

Conflict of interest

GSD, JMG, HK, and JDR are inventors on a Princeton University patent covering serine hydroxymethyltransferase inhibitors and their use in cancer. JDR is a co-founder of Raze Therapeutics and advisor and stock owner in Kadmon, Agios, L.E.A.F., and Rafael Pharmaceuticals. No competing interests were disclosed by the other authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Cañaveras, J.C., Lancho, O., Ducker, G.S. et al. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia 35, 377–388 (2021). https://doi.org/10.1038/s41375-020-0845-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0845-6

This article is cited by

Search

Quick links