Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunotherapy

A novel chimeric antigen receptor redirecting T-cell specificity towards CD26+ cancer cells

Abstract

Chimeric antigen receptor (CAR) T-cell immunotherapy is rapidly emerging as a promising novel treatment for malignancies. To broaden the success of CAR T-cell treatment for chronic myeloid leukaemia (CML), we attempted to construct a CD26 CAR T-cell product to target tyrosine kinase inhibitor-insensitive leukaemia stem cells (LSCs), which have been a challenge to cure for several decades and can be discriminated from healthy stem cells by the robust biomarker CD26. Of additional interest is that CD26 has also been reported to be a multi-purpose therapeutic target for other malignancies. Here, we constructed CD26 CAR T cells utilizing lentiviral transduction methods and verified them by flow cytometry analysis and RNA-seq. We found that the initial expansion of CD26 CAR-transduced T cells was delayed due to transient fratricide, but subsequent expansion was accelerated. CD26 CAR T cells exhibited cytotoxicity against the CD26+ T-cell lymphoma cell line Karpas 299, CD26-overexpressing K562 cells and primary CML LSCs, activated multiple effector functions in co-culture assays, and limited tumour progression in a mouse model; but there was some off-tumour cytotoxicity towards activated lymphocytes. In conclusion, these results establish the feasibility of using CD26 as an antigen for CAR T cells targeting CD26+ tumour cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CD26 CAR T-cell construction and characterization.
Fig. 2: The gene expression of CD26 CAR T cells.
Fig. 3: Specific cytotoxicity of CD26 CAR T cells against Karpas 299 cells.
Fig. 4: Specific cytotoxicity of CD26 CAR T cells against CD26+ K562 cells in vitro.
Fig. 5: Cytotoxicity against primary CD34+CD26+ cells from CML patients.
Fig. 6: The potential side effects of CD26 CAR T cells on healthy haematopoietic cells.

Similar content being viewed by others

References

  1. Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol. 2017;15:47–62.

    PubMed  PubMed Central  Google Scholar 

  2. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377:2545–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.

    PubMed  PubMed Central  Google Scholar 

  4. Sadelain M. CD19 CAR T cells. Cell. 2017;171:1471.

    CAS  PubMed  Google Scholar 

  5. Kim MY, Yu K, Kenderian SS, Ruella M, Chen S, Shin T, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell. 2018;173:1439–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mardiros A, Dos SC, McDonald T, Brown CE, Wang X, Budde LE, et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood. 2013;122:3138–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Drent E, Groen RW, Noort WA, Themeli M, Lammerts VBJ, Parren PW, et al. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica. 2016;101:616–25. 2016-05-01

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Casucci M, Nicolis DRB, Falcone L, Camisa B, Norelli M, Genovese P, et al. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood. 2013;122:3461–72.

    CAS  PubMed  Google Scholar 

  9. Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015;126:983–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gomes-Silva D, Srinivasan M, Sharma S, Lee CM, Wagner DL, Davis TH, et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood. 2017;130:285–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ramos CA, Ballard B, Zhang H, Dakhova O, Gee AP, Mei Z, et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor–redirected lymphocytes. J Clin Invest. 2017;127:3462–71.

    PubMed  PubMed Central  Google Scholar 

  12. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86:2041–50.

    CAS  PubMed  Google Scholar 

  13. Pallera A, Altman JK, Berman E, Abboud CN, Bhatnagar B, Curtin P, et al. NCCN guidelines insights: chronic myeloid leukemia, version 1.2017. J Natl Compr Canc Netw. 2016;14:1505–12.

    CAS  PubMed  Google Scholar 

  14. Saussele S, Richter J, Hochhaus A, Mahon FX. The concept of treatment-free remission in chronic myeloid leukemia. Leukemia. 2016;30:1638–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jorgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL. Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood. 2007;109:4016–9.

    CAS  PubMed  Google Scholar 

  16. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121:396–409.

    CAS  PubMed  Google Scholar 

  17. Bocchia M, Sicuranza A, Abruzzese E, Iurlo A, Sirianni S, Gozzini A, et al. Residual peripheral blood CD26+ leukemic stem cells in chronic myeloid leukemia patients during TKI therapy and during treatment-free remission. Front Oncol. 2018;8:194.

    PubMed  PubMed Central  Google Scholar 

  18. Chomel JC, Bonnet ML, Sorel N, Bertrand A, Meunier MC, Fichelson S, et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood. 2011;118:3657–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Herrmann H, Sadovnik I, Cerny-Reiterer S, Rulicke T, Stefanzl G, Willmann M, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood. 2014;123:3951–62.

    CAS  PubMed  Google Scholar 

  20. Warfvinge R, Geironson L, Sommarin M, Lang S, Karlsson C, Roschupkina T, et al. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. Blood. 2017;129:2384–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Davies S, Beckenkamp A, Buffon A. CD26 a cancer stem cell marker and therapeutic target. Biomed Pharmacother. 2015;71:135–8.

    CAS  PubMed  Google Scholar 

  22. Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4—a potential biomarker and target for cancer therapy. Pharmacol Therapeut. 2019;198:135–59.

    CAS  Google Scholar 

  23. Angevin E, Isambert N, Trillet-Lenoir V, You B, Alexandre J, Zalcman G, et al. First-in-human phase 1 of YS110, a monoclonal antibody directed against CD26 in advanced CD26-expressing cancers. Br J Cancer. 2017;116:1126–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Balaji KN, Schaschke N, Machleidt W, Catalfamo M, Henkart PA. Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J Exp Med. 2002;196:493–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaiserman D, Bird PI. Control of granzymes by serpins. Cell Death Differ. 2010;17:586–95.

    CAS  PubMed  Google Scholar 

  26. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 Interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998;94:481–90.

    CAS  PubMed  Google Scholar 

  27. Steinke FC, Xue H. From inception to output, Tcf1 and Lef1 safeguard development of T cells and innate immune cells. Immunol Res. 2014;59:45–55.

    CAS  PubMed  Google Scholar 

  28. Hatano R, Ohnuma K, Yamamoto J, Dang NH, Morimoto C. CD26-mediated co-stimulation in human CD8(+) T cells provokes effector function via pro-inflammatory cytokine production. Immunology. 2013;138:165–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Herrmann H, Cerny-Reiterer S, Gleixner KV, Blatt K, Herndlhofer S, Rabitsch W, et al. CD34(+)/CD38(-) stem cells in chronic myeloid leukemia express Siglec-3 (CD33) and are responsive to the CD33-targeting drug gemtuzumab/ozogamicin. Haematologica. 2012;97:219–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Krause DS, Lazarides K, von Andrian UH, Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med. 2006;12:1175–80.

    CAS  PubMed  Google Scholar 

  31. Landberg N, Hansen N, Askmyr M, Agerstam H, Lassen C, Rissler M, et al. IL1RAP expression as a measure of leukemic stem cell burden at diagnosis of chronic myeloid leukemia predicts therapy outcome. Leukemia. 2016;30:253–7.

    CAS  PubMed  Google Scholar 

  32. Kenderian SS, Ruella M, Shestova O, Klichinsky M, Aikawa V, Morrissette JJD, et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia. 2015;29:1637–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Warda W, Larosa F, Neto Da Rocha M, Trad R, Deconinck E, Fajloun Z, et al. CML hematopoietic stem cells expressing IL-1RAP can be targeted by chimeric antigen receptor (CAR)-engineered T cells. Cancer Res. 2018;79:663–75.

    PubMed  Google Scholar 

  34. Cui J, Zhu Z, Liu S, Li Q, Meng L, Cheng H, et al. Monitoring of leukemia stem cells in chronic myeloid leukemia patients. Leuk Lymphoma. 2018;59:2264–6.

    CAS  PubMed  Google Scholar 

  35. Ho L, Aytac U, Stephens LC, Ohnuma K, Mills GB, McKee KS, et al. In vitro and in vivo antitumor effect of the anti-CD26 monoclonal antibody 1F7 on human CD30+ anaplastic large cell T-cell lymphoma Karpas 299. Clin Cancer Res. 2001;7:2031–40.

    CAS  PubMed  Google Scholar 

  36. Das M. Monoclonal antibody YS110 for refractory solid tumours. Lancet Oncol. 2017;18:e247.

    PubMed  Google Scholar 

  37. Gomes-Silva D, Mukherjee M, Srinivasan M, Krenciute G, Dakhova O, Zheng Y, et al. Tonic 4-1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell Rep. 2017;21:17–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mamonkin M, Mukherjee M, Srinivasan M, Sharma S, Gomes-Silva D, Mo F, et al. Reversible transgene expression reduces fratricide and permits 4-1BB Costimulation of CAR T cells directed to T-cell malignancies. Cancer Immunol Res. 2018;6:47–58.

    CAS  PubMed  Google Scholar 

  39. Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 2016;164:770–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu S, Yi M, Qin S, Wu K. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol Cancer. 2019;18:125.

    PubMed  PubMed Central  Google Scholar 

  41. Mestermann K, Giavridis T, Weber J, Rydzek J, Frenz S, Nerreter T, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med. 2019;11:eaau5907.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by grants from the National Natural Science Foundation of China (NSFC) (Nos: 81873440, 81700142 and 81670145). We appreciate all of the doctors and patients who have contributed to this work.

Author information

Authors and Affiliations

Authors

Contributions

XJZ and YY designed the research; WML, YY and YX provided the samples and technical support; SZ and XYZ performed experiments; QL, XYZ and SZ analyzed results and made the figures; XJZ and SZ wrote the paper; FJC, ZDZ and PZ interpreted data and reviewed the paper.

Corresponding authors

Correspondence to Yong You or Xiaojian Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Li, W., Xiao, Y. et al. A novel chimeric antigen receptor redirecting T-cell specificity towards CD26+ cancer cells. Leukemia 35, 119–129 (2021). https://doi.org/10.1038/s41375-020-0824-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0824-y

This article is cited by

Search

Quick links