Immunotherapy

Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells

Abstract

Acute myeloid leukemia (AML) initiating and sustaining cells maintain high cell-surface similarity with their cells-of-origin, i.e., hematopoietic stem and progenitor cells (HSPCs), and identification of truly distinguishing leukemia-private antigens has remained elusive to date. To nonetheless utilize surface antigen-directed immunotherapy in AML, we here propose targeting both, healthy and malignant human HSPC, by chimeric antigen receptor (CAR) T-cells with specificity against CD117, the cognate receptor for stem cell factor. This approach should spare most mature hematopoietic cells and would require CAR T termination followed by subsequent transplantation of healthy HSPCs to rescue hematopoiesis. We successfully generated anti-CD117 CAR T-cells from healthy donors and AML patients. Anti-CD117 CAR T-cells efficiently targeted healthy and leukemic CD117-positive cells in vitro. In mice xenografted with healthy human hematopoiesis, they eliminated CD117-expressing, but not CD117-negative human cells. Importantly, in mice xenografted with primary human CD117-positive AML, they eradicated disease in a therapeutic setting. Administration of ATG in combination with rituximab, which binds to the co-expressed CAR T-cell transduction/selection marker RQR8, led to CAR T-cell depletion. Thus, we here provide the first proof of concept for the generation and preclinical efficacy of CAR T-cells directed against CD117-expressing human hematopoietic cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CD117 expression in human tissues, healthy human bone marrow, and on AML blast cells.
Fig. 2: Generation and characterization of anti-CD117 CAR T-cells.
Fig. 3: In vitro CAR T-cell activation, proliferation and cytotoxicity depend on-target antigen density.
Fig. 4: Anti-CD117 CAR T-cells deplete healthy human CD117+ CD34+ bone marrow cells and CD117+ AML cells in vitro.
Fig. 5: Anti-CD117 CAR T-cells deplete healthy CD117+ HSPCs in vivo.
Fig. 6: Anti-CD117 CAR T-cells deplete autologous CD117+ AML cells in vivo in humanized mice.
Fig. 7: In vivo depletion of anti-CD117 CAR T-cells with rituximab and ATG.

References

  1. 1.

    Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.

    PubMed  Google Scholar 

  3. 3.

    Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet. 2018;392:593–606.

    PubMed  Google Scholar 

  4. 4.

    June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.

    CAS  PubMed  Google Scholar 

  5. 5.

    June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379:64–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015;14:499–509.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378:449–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380:1726–37.

    CAS  PubMed  Google Scholar 

  11. 11.

    Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119:2709–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev. 2019;34:45–55.

    CAS  PubMed  Google Scholar 

  13. 13.

    Finney OC, Brakke HM, Rawlings-Rhea S, Hicks R, Doolittle D, Lopez M, et al. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J Clin Invest. 2019; 129:2123–32.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Haubner S, Perna F, Kohnke T, Schmidt C, Berman S, Augsberger C, et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia. 2019; 33:64–74.

    CAS  PubMed  Google Scholar 

  15. 15.

    Perna F, Berman SH, Soni RK, Mansilla-Soto J, Eyquem J, Hamieh M, et al. Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell. 2017;32:506–19.e505.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lennartsson J, Ronnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev. 2012;92:1619–49.

    CAS  PubMed  Google Scholar 

  17. 17.

    Tsao AS, Kantarjian H, Thomas D, Giles F, Cortes J, Garcia-Manero G, et al. C-Kit receptor expression in acute leukemias-association with patient and disease characteristics and with outcome. Leuk Res. 2004;28:373–8.

    CAS  PubMed  Google Scholar 

  18. 18.

    Valverde LR, Matutes E, Farahat N, Heffernan A, Owusu-Ankomah K, Morilla R, et al. C-Kit receptor (CD117) expression in acute leukemia. Ann Hematol. 1996;72:11–15.

    CAS  PubMed  Google Scholar 

  19. 19.

    Wells SJ, Bray RA, Stempora LL, Farhi DC. CD117/CD34 expression in leukemic blasts. Am J Clin Pathol. 1996;106:192–5.

    CAS  PubMed  Google Scholar 

  20. 20.

    Cascavilla N, Musto P, D’Arena G, Melillo L, Carella AM, Petrilli MP, et al. CD117 (c-Kit) is a restricted antigen of acute myeloid leukemia and characterizes early differentiative levels of M5 FAB subtype. Haematologica. 1998;83:392–7.

    CAS  PubMed  Google Scholar 

  21. 21.

    Lauria F, Bagnara GP, Rondelli D, Raspadori D, Strippoli P, Bonsi L, et al. Cytofluorimetric and functional analysis of c-Kit receptor in acute leukemia. Leuk Lymphoma. 1995;18:451–5.

    CAS  PubMed  Google Scholar 

  22. 22.

    Bene MC, Bernier M, Casasnovas RO, Castoldi G, Knapp W, Lanza F, et al. The reliability and specificity of c-Kit for the diagnosis of acute myeloid leukemias and undifferentiated leukemias. The European Group for the Immunological Classification of Leukemias (EGIL). Blood. 1998;92:596–9.

    CAS  PubMed  Google Scholar 

  23. 23.

    Hans CP, Finn WG, Singleton TP, Schnitzer B, Ross CW. Usefulness of anti-CD117 in the flow cytometric analysis of acute leukemia. Am J Clin Pathol. 2002;117:301–5.

    CAS  PubMed  Google Scholar 

  24. 24.

    Schwartz S, Heinecke A, Zimmermann M, Creutzig U, Schoch C, Harbott J, et al. Expression of the c-Kit receptor (CD117) is a feature of almost all subtypes of de novo acute myeloblastic leukemia (AML), including cytogenetically good-risk AML, and lacks prognostic significance. Leuk Lymphoma. 1999;34:85–94.

    CAS  PubMed  Google Scholar 

  25. 25.

    Sperling C, Schwartz S, Buchner T, Thiel E, Ludwig WD. Expression of the stem cell factor receptor c-Kit (CD117) in acute leukemias. Haematologica. 1997;82:617–21.

    CAS  PubMed  Google Scholar 

  26. 26.

    Di Noto R, Lo Pardo C, Schiavone EM, Manzo C, Vacca C, Ferrara F, et al. Stem cell factor receptor (c-Kit, CD117) is expressed on blast cells from most immature types of acute myeloid mallignancies but is also a characteristic of a subset of acute promyelocytic leukaemia. Br J Haematol. 1996;92:562–4.

    PubMed  Google Scholar 

  27. 27.

    Czechowicz A, Kraft D, Weissman IL, Bhattacharya D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science. 2007;318:1296–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Chhabra A, Ring AM, Weiskopf K, Schnorr PJ, Gordon S, Le AC, et al. Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy. Sci Transl Med. 2016;8:351ra105.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Czechowicz A, Palchaudhuri R, Scheck A, Hu Y, Hoggatt J, Saez B, et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat Commun. 2019;10:617.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Xue X, Pech NK, Shelley WC, Srour EF, Yoder MC, Dinauer MC. Antibody targeting KIT as pretransplantation conditioning in immunocompetent mice. Blood. 2010;116:5419–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kwon HS, Logan AC, Chhabra A, Pang WW, Czechowicz A, Tate K, et al. Anti-human CD117 antibody-mediated bone marrow niche clearance in nonhuman primates and humanized NSG mice. Blood. 2019;133:2104–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Pearse BR, McDonough SM, Proctor JL, Panwar R, Sarma G, McShea MA, et al. CD117-amanitin antibody drug conjugates effectively deplete human and non-human primate HSCs: proof of concept as a targeted strategy for conditioning patients for bone marrow transplant. Blood. 2018;132:3314.

    Google Scholar 

  33. 33.

    Pang WW, Czechowicz A, Logan AC, Bhardwaj R, Poyser J, Park CY, et al. Anti-CD117 antibody depletes normal and myelodysplastic syndrome human hematopoietic stem cells in xenografted mice. Blood. 2019;133:2069–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Arai Y, Choi U, Corsino CI, Koontz SM, Tajima M, Sweeney CL, et al. Myeloid conditioning with c-Kit-targeted CAR-T cells enables donor stem cell engraftment. Mol Ther. 2018;26:1181–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Reshetnyak AV, Nelson B, Shi X, Boggon TJ, Pavlenco A, Mandel-Bausch EM, et al. Structural basis for KIT receptor tyrosine kinase inhibition by antibodies targeting the D4 membrane-proximal region. Proc Natl Acad Sci USA. 2013;110:17832–7.

    CAS  PubMed  Google Scholar 

  36. 36.

    Philip B, Kokalaki E, Mekkaoui L, Thomas S, Straathof K, Flutter B, et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood. 2014;124:1277–87.

    CAS  PubMed  Google Scholar 

  37. 37.

    Ellegast JM, Rauch PJ, Kovtonyuk LV, Muller R, Wagner U, Saito Y, et al. inv(16) and NPM1mut AMLs engraft human cytokine knock-in mice. Blood. 2016;128:2130–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Theocharides AP, Rongvaux A, Fritsch K, Flavell RA, Manz MG. Humanized hemato-lymphoid system mice. Haematologica. 2016;101:5–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Nischang M, Sutmuller R, Gers-Huber G, Audigé A, Li D, Rochat M-A, et al. Humanized mice recapitulate key features of HIV-1 infection: a novel concept using long-acting anti-retroviral drugs for treating HIV-1. PLoS One. 2012;7:e38853.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Song Y, Rongvaux A, Taylor A, Jiang T, Tebaldi T, Balasubramanian K, et al. A highly efficient and faithful MDS patient-derived xenotransplantation model for pre-clinical studies. Nat Commun. 2019;10:366.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol. 2014;32:364–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174:6477–89.

    CAS  PubMed  Google Scholar 

  43. 43.

    Tsuura Y, Hiraki H, Watanabe K, Igarashi S, Shimamura K, Fukuda T, et al. Preferential localization of c-kit product in tissue mast cells, basal cells of skin, epithelial cells of breast, small cell lung carcinoma and seminoma/dysgerminoma in human: immunohistochemical study on formalin-fixed, paraffin-embedded tissues. Virchows Arch. 1994;424:135–41.

    CAS  PubMed  Google Scholar 

  44. 44.

    Miettinen M, Lasota J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol. 2005;13:205–20.

    CAS  PubMed  Google Scholar 

  45. 45.

    Strobl H, Takimoto M, Majdic O, Hocker P, Knapp W. Antigenic analysis of human haemopoietic progenitor cells expressing the growth factor receptor c-Kit. Br J Haematol. 1992;82:287–94.

    CAS  PubMed  Google Scholar 

  46. 46.

    Lerner NB, Nocka KH, Cole SR, Qiu FH, Strife A, Ashman LK, et al. Monoclonal antibody YB5.B8 identifies the human c-Kit protein product. Blood. 1991;77:1876–83.

    CAS  PubMed  Google Scholar 

  47. 47.

    Nombela-Arrieta C, Manz MG. Quantification and three-dimensional microanatomical organization of the bone marrow. Blood Adv. 2017;1:407–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Manz MG, Russkamp NF. Selective CD117(+) HSC exchange therapy. Blood. 2019;133:2007–9.

    CAS  PubMed  Google Scholar 

  49. 49.

    Agarwal R, Dvorak CC, Prohaska S, Long-Boyle J, Kwon H-S, Brown JM, et al. Toxicity-Free Hematopoietic Stem Cell Engraftment Achieved with Anti-CD117 Monoclonal Antibody Conditioning. Biol Blood Marrow Transplant. 2019;25(Suppl 3):S92.

    Google Scholar 

  50. 50.

    Beyar-Katz O, Gill S. Novel Approaches to Acute Myeloid Leukemia Immunotherapy. Clin Cancer Res. 2018;24:5502–15.

    CAS  PubMed  Google Scholar 

  51. 51.

    Kim MY, Yu KR, Kenderian SS, Ruella M, Chen S, Shin TH, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell. 2018;173:1439–53.e1419.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, et al. An inducible caspase 9 safety switch for T-cell therapy. Blood. 2005;105:4247–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Holzinger A, Abken H. CAR T-cells: a snapshot on the growing options to design a CAR. HemaSphere. 2019;3:e172.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 2016;164:770–9.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants of the Swiss National Science Foundation (310030B_166673/1), the Clinical Research Priority Program “Human Hemato-Lymphoid Diseases” of the University of Zurich to MGM; the Clinical Research Priority Program “ImmunoCure” of the University of Zurich to MGM and DN; a Hanne Liebermann-Stiftung grant to AS; a Promedica Foundation grant to RM; a University Research Priority Project Translational Cancer Research grant to RM; a Swiss Cancer Research grant to MGM and DN (KFS-3846-02-2016), as well as a Swiss National Science Foundation grant (No. 310030_182003/1) and “the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program” (grant agreement 670603) to DN.

Author information

Affiliations

Authors

Contributions

RM, JDK, and NFR devised, performed and analyzed experiments, and wrote the paper; NN, DM, and JF performed and analyzed experiments; AS, SP, CFM, and CMW performed experiments; AMM, MvdB, BB, and CM devised experiments and discussed data; and DN and MGM directed the study and wrote the paper.

Corresponding author

Correspondence to Markus G. Manz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Myburgh, R., Kiefer, J.D., Russkamp, N.F. et al. Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells. Leukemia 34, 2688–2703 (2020). https://doi.org/10.1038/s41375-020-0818-9

Download citation

Further reading

Search

Quick links