Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunotherapy

Targeting an adenosine-mediated “don’t eat me signal” augments anti-lymphoma immunity by anti-CD20 monoclonal antibody

Abstract

A growing body of evidence suggests that macrophage immune checkpoint molecules are potential targets in the era of cancer immunotherapy. Here we showed that extracellular adenosine, an abundant metabolite in the tumor microenvironment, critically impedes the therapeutic efficacy of anti-CD20 monoclonal antibodies (mAbs) against B-cell lymphoma. Using a syngeneic B-cell lymphoma model, we showed that host deficiency of adenosine 2A receptor (A2AR), but not A2BR, remarkably improved lymphoma control by anti-CD20 mAb therapy. Conditional deletion of A2AR in myeloid cells, and to a lesser extent in NK cells, augmented therapeutic efficacy of anti-CD20 mAb. Indeed, adenosine signaling impaired antibody-mediated cellular phagocytosis (ADCP) by macrophages and limited the generation of anti-lymphoma CD8+ T cells. Pharmacological inhibition of A2AR overcame the adenosine-mediated negative regulation of ADCP by rituximab in a xeno-transplanted lymphoma model. Moreover, aberrant overexpression of CD39, an apical ecto-enzyme for adenosine generation, showed a negative impact on prognosis in patients with diffuse large B-cell lymphoma, as well as on preclinical efficacy of rituximab. Together, adenosine acts as a “don’t eat me signal”, and may be a potential target to harness anti-lymphoma immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adenosine limits the therapeutic efficacy of anti-CD20 mAb.
Fig. 2: Adenosine negatively regulates antibody-mediated cellular cytotoxicity by NK cells.
Fig. 3: Adenosine negatively regulates antibody-mediated cellular phagocytosis by macrophages.
Fig. 4: Adenosine negatively regulates anti-lymphoma adaptive immunity elicited by anti-CD20 mAb.
Fig. 5: Therapeutic blockade of adenosine signaling augments efficacies of anti-CD20 mAbs.
Fig. 6: The adenosine-rich lymphoma milieu limits rituximab efficacy.

Similar content being viewed by others

References

  1. Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47:115–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rezvani AR, Maloney DG. Rituximab resistance. Best Pract Res Clin Haematol. 2011;24:203–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99:754–8.

    CAS  PubMed  Google Scholar 

  4. Marcus R, Davies A, Ando K, Klapper W, Opat S, Owen C, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N. Engl J Med. 2017;377:1331–44.

    CAS  PubMed  Google Scholar 

  5. Tobinai K, Klein C, Oya N, Fingerle-Rowson G. A review of obinutuzumab (GA101), a novel type II anti-CD20 monoclonal antibody, for the treatment of patients with B-cell malignancies. Adv Ther. 2017;34:324–56.

    CAS  PubMed  Google Scholar 

  6. Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15:31–46.

    CAS  PubMed  Google Scholar 

  7. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 2010;142:699–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yanagita T, Murata Y, Tanaka D, Motegi SI, Arai E, Daniwijaya EW, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140.

    PubMed  PubMed Central  Google Scholar 

  9. Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX, Weissman IL. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer. 2019;19:568–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakamura K, Smyth MJ Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol. 2020;17:1–12.

  11. Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, et al. CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin’s Lymphoma. N. Engl J Med. 2018;379:1711–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Young A, Ngiow SF, Barkauskas DS, Sult E, Hay C, Blake SJ, et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell. 2016;30:391–403.

    CAS  PubMed  Google Scholar 

  13. Vijayan D, Young A, Teng MWL, Smyth MJ. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer. 2017;17:709–24.

    CAS  PubMed  Google Scholar 

  14. Saze Z, Schuler PJ, Hong CS, Cheng D, Jackson EK, Whiteside TL. Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood. 2013;122:9–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bastid J, Regairaz A, Bonnefoy N, Dejou C, Giustiniani J, Laheurte C, et al. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol Res. 2015;3:254–65.

    CAS  PubMed  Google Scholar 

  16. Young A, Ngiow SF, Gao Y, Patch AM, Barkauskas DS, Messaoudene M, et al. A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. 2018;78:1003–16.

    CAS  PubMed  Google Scholar 

  17. Mittal D, Sinha D, Barkauskas D, Young A, Kalimutho M, Stannard K, et al. Adenosine 2B receptor expression on cancer cells promotes metastasis. Cancer Res. 2016;76:4372–82.

    CAS  PubMed  Google Scholar 

  18. Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 1999;8:265–77.

    CAS  PubMed  Google Scholar 

  19. Minard-Colin V, Xiu Y, Poe JC, Horikawa M, Magro CM, Hamaguchi Y, et al. Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage FcgammaRI, FcgammaRIII, and FcgammaRIV. Blood. 2008;112:1205–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Putz EM, Mayfosh AJ, Kos K, Barkauskas DS, Nakamura K, Town L, et al. NK cell heparanase controls tumor invasion and immune surveillance. J Clin Investig. 2017;127:2777–88.

    PubMed  PubMed Central  Google Scholar 

  21. Nakamura K, Kassem S, Cleynen A, Chretien ML, Guillerey C, Putz EM, et al. Dysregulated IL-18 is a key driver of immunosuppression and a possible therapeutic target in the multiple myeloma microenvironment. Cancer Cell. 2018;33:634–48.e5.

    CAS  PubMed  Google Scholar 

  22. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171:481–94.e15.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Souza-Fonseca-Guimaraes F, Blake SJ, Makkouk A, Chester C, Kohrt HE, Smyth MJ. Anti-CD137 enhances anti-CD20 therapy of systemic B-cell lymphoma with altered immune homeostasis but negligible toxicity. Oncoimmunology. 2016;5:e1192740.

    PubMed  PubMed Central  Google Scholar 

  24. Keane C, Vari F, Hertzberg M, Cao KA, Green MR, Han E, et al. Ratios of T-cell immune effectors and checkpoint molecules as prognostic biomarkers in diffuse large B-cell lymphoma: a population-based study. Lancet Haematol. 2015;2:e445–55.

    PubMed  Google Scholar 

  25. Scott DW, Gascoyne RD. The tumour microenvironment in B cell lymphomas. Nat Rev Cancer. 2014;14:517–34.

    CAS  PubMed  Google Scholar 

  26. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl J Med. 2008;359:2313–23.

    CAS  PubMed  Google Scholar 

  27. Ren Z, Guo J, Liao J, Luan Y, Liu Z, Sun Z, et al. CTLA-4 limits anti-CD20-mediated tumor regression. Clin Cancer Res. 2017;23:193–203.

    CAS  PubMed  Google Scholar 

  28. Matozaki T, Murata Y, Okazawa H, Ohnishi H. Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol. 2009;19:72–80.

    CAS  PubMed  Google Scholar 

  29. Kant AM, De P, Peng X, Yi T, Rawlings DJ, Kim JS, et al. SHP-1 regulates Fcgamma receptor-mediated phagocytosis and the activation of RAC. Blood. 2002;100:1852–9.

    CAS  PubMed  Google Scholar 

  30. Zhang Z, Shen K, Lu W, Cole PA. The role of C-terminal tyrosine phosphorylation in the regulation of SHP-1 explored via expressed protein ligation. J Biol Chem. 2003;278:4668–74.

    CAS  PubMed  Google Scholar 

  31. Cardoso CC, Auat M, Santos-Pirath IM, Rudolf-Oliveira RCM, da Silva JP, Lange BG, et al. The importance of CD39, CD43, CD81, and CD95 expression for differentiating B cell lymphoma by flow cytometry. Cytometry Part B, Clinical. Cytometry. 2018;94:451–8.

    CAS  PubMed  Google Scholar 

  32. Leonard EJ, Skeel A, Chiang PK, Cantoni GL. The action of the adenosylhomocysteine hydrolase inhibitor, 3-deazaadenosine, on phagocytic function of mouse macrophages and human monocytes. Biochem Biophys Res Commun. 1978;84:102–9.

    CAS  PubMed  Google Scholar 

  33. Sung SJ, Silverstein SC. Inhibition of macrophage phagocytosis by methylation inhibitors. Lack of correlation of protein carboxymethylation and phospholipid methylation with phagocytosis. J Biol Chem. 1985;260:546–54.

    CAS  PubMed  Google Scholar 

  34. Haskó G, Pacher P, Deitch EA, Vizi ES. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther. 2007;113:264–75.

    PubMed  Google Scholar 

  35. Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414:916–20.

    CAS  PubMed  Google Scholar 

  36. Csóka B, Selmeczy Z, Koscsó B, Németh ZH, Pacher P, Murray PJ, et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 2012;26:376–86.

    PubMed  PubMed Central  Google Scholar 

  37. Majumdar S, Aggarwal BB. Adenosine suppresses activation of nuclear factor-kappaB selectively induced by tumor necrosis factor in different cell types. Oncogene. 2003;22:1206–18.

    CAS  PubMed  Google Scholar 

  38. Xaus J, Valledor AF, Cardo M, Marques L, Beleta J, Palacios JM, et al. Adenosine inhibits macrophage colony-stimulating factor-dependent proliferation of macrophages through the induction of p27kip-1 expression. J Immunol. 1999;163:4140–9.

    CAS  PubMed  Google Scholar 

  39. Hernandez-Ilizaliturri FJ, Jupudy V, Ostberg J, Oflazoglu E, Huberman A, Repasky E, et al. Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin’s lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res. 2003;9:5866–73.

    CAS  PubMed  Google Scholar 

  40. Valgardsdottir R, Cattaneo I, Klein C, Introna M, Figliuzzi M, Golay J. Human neutrophils mediate trogocytosis rather than phagocytosis of CLL B cells opsonized with anti-CD20 antibodies. Blood. 2017;129:2636–44.

    CAS  PubMed  Google Scholar 

  41. Liu X, Pu Y, Cron K, Deng L, Kline J, Frazier WA, et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med. 2015;21:1209–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572:392–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol. 2018;19:76–84.

    CAS  PubMed  Google Scholar 

  44. Chen J, Zhong MC, Guo H, Davidson D, Mishel S, Lu Y, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature. 2017;544:493–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang ZY, Hunter S, Kim MK, Indik ZK, Schreiber AD. The effect of phosphatases SHP-1 and SHIP-1 on signaling by the ITIM- and ITAM-containing Fcgamma receptors FcgammaRIIB and FcgammaRIIA. J Leukoc Biol. 2003;73:823–9.

    CAS  PubMed  Google Scholar 

  46. Pauls SD, Marshall AJ. Regulation of immune cell signaling by SHIP1: a phosphatase, scaffold protein, and potential therapeutic target. Eur J Immunol. 2017;47:932–45.

    CAS  PubMed  Google Scholar 

  47. Cerny O, Kamanova J, Masin J, Bibova I, Skopova K, Sebo P. Bordetella pertussis adenylate cyclase Toxin blocks induction of bactericidal nitric oxide in macrophages through cAMP-dependent activation of the SHP-1 phosphatase. J Immunol. 2015;194:4901–13.

    CAS  PubMed  Google Scholar 

  48. Bruhns P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood. 2012;119:5640–9.

    CAS  PubMed  Google Scholar 

  49. Klanova M, Oestergaard MZ, Trneny M, Hiddemann W, Marcus R, Sehn LH, et al. Prognostic impact of natural killer cell count in follicular lymphoma and diffuse large B-cell lymphoma patients treated with immunochemotherapy. Clin Cancer Res. 2019;25:4634–43.

    CAS  PubMed  Google Scholar 

  50. Vari F, Arpon D, Keane C, Hertzberg MS, Talaulikar D, Jain S, et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood. 2018;131:1809–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hilchey SP, Hyrien O, Mosmann TR, Livingstone AM, Friedberg JW, Young F, et al. Rituximab immunotherapy results in the induction of a lymphoma idiotype-specific T-cell response in patients with follicular lymphoma: support for a “vaccinal effect” of rituximab. Blood. 2009;113:3809–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tobin JWD, Keane C, Gunawardana J, Mollee P, Birch S, Hoang T, et al. Progression of disease within 24 months in follicular lymphoma is associated with reduced intratumoral immune infiltration. J Clin Oncol. 2019;37:3300–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hagemeister F. Rituximab for the treatment of non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Drugs. 2010;70:261–72.

    CAS  PubMed  Google Scholar 

  54. Pierpont TM, Limper CB, Richards KL. Past, present, and future of rituximab-the world’s first oncology monoclonal antibody therapy. Front Oncol. 2018;8:163.

    PubMed  PubMed Central  Google Scholar 

  55. Kondo T, Mizuno Y. A long-term study of istradefylline safety and efficacy in patients with Parkinson disease. Clin Neuropharmacol. 2015;38:41–6.

    CAS  PubMed  Google Scholar 

  56. Fong L, Hotson A, Powderly JD, Sznol M, Heist RS, Choueiri TK, et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov. 2020;10:40–53.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Brodie Quine, Andreea Zaharia, and Liam Town, for mouse breeding and genotyping; the animal house and flow cytometry facilities at QIMR Berghofer Medical Research Institute; and members of Immunology in Cancer and Infection Laboratory for helpful discussion. KN is supported by the Naito Foundation and NHMRC Project Grant (1159593). MJS is supported by a NH&MRC Senior Principal Research Fellowship (1078671) and Program Grant (1132519). KN and MJS were recipients of a Leukemia Foundation of Australia SERP grant.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: KN and MJS. Acquisition of data: KN and M.C. Analysis and interpretation of data: KN, MC, FV, HO, MKG, and MJS. Drafting of manuscript: KN and MJS.

Corresponding authors

Correspondence to Kyohei Nakamura or Mark J. Smyth.

Ethics declarations

Conflict of interest

MJS has research agreements with Bristol Myers Squibb, and Tizona Therapeutics, and MKG has research agreements with Bristol Myers Squibb and Janssen.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, K., Casey, M., Oey, H. et al. Targeting an adenosine-mediated “don’t eat me signal” augments anti-lymphoma immunity by anti-CD20 monoclonal antibody. Leukemia 34, 2708–2721 (2020). https://doi.org/10.1038/s41375-020-0811-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0811-3

This article is cited by

Search

Quick links