Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple myeloma gammopathies

Daratumumab induces mechanisms of immune activation through CD38+ NK cell targeting

Abstract

Daratumumab (Dara), a multiple myeloma (MM) therapy, is an antibody against the surface receptor CD38, which is expressed not only on plasma cells but also on NK cells and monocytes. Correlative data have highlighted the immune-modulatory role of Dara, despite the paradoxical observation that Dara regimens decrease the frequency of total NK cells. Here we show that, despite this reduction, NK cells play a pivotal role in Dara anti-MM activity. CD38 on NK cells is essential for Dara-induced immune modulation, and its expression is restricted to NK cells with effector function. We also show that Dara induces rapid CD38 protein degradation associated with NK cell activation, leaving an activated CD38-negative NK cell population. CD38+ NK cell targeting by Dara also promotes monocyte activation, inducing an increase in T-cell costimulatory molecules (CD86/80) and enhancing anti-MM phagocytosis activity ex vivo and in vivo. In support of Dara’s immunomodulating role, we show that MM patients that discontinued Dara therapy because of progression maintain targetable unmutated surface CD38 expression on their MM cells, but retain effector cells with impaired cellular immune function. In summary, we report that CD38+ NK cells may be an unexplored therapeutic target for priming the immune system of MM patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CD38+ NK cells are essential for Dara-induced killing of MM cells.
Fig. 2: Dara induces direct CD38+ NK cell activation.
Fig. 3: Dara induces CD38 protein reduction in NK cells and Ca2+ mobilization.
Fig. 4: NK cell activation by Dara is essential for monocyte activation and polarization.
Fig. 5: Dara-resistant patients retain surface CD38 on MM cells.
Fig. 6: Proposed mechanism of action.

Similar content being viewed by others

References

  1. Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, Usmani SZ, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:1319–31.

    Article  CAS  PubMed  Google Scholar 

  2. Plesner T, Arkenau HT, Gimsing P, Krejcik J, Lemech C, Minnema MC, et al. Phase 1/2 study of daratumumab, lenalidomide, and dexamethasone for relapsed multiple myeloma. Blood. 2016;128:1821–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:754–66.

    Article  CAS  PubMed  Google Scholar 

  4. Rajan AM, Kumar S. New investigational drugs with single-agent activity in multiple myeloma. Blood Cancer J. 2016;6:e451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373:1207–19.

    Article  CAS  PubMed  Google Scholar 

  6. Plesner T, Arkenau HT, Gimsing P, Krejcik J, Lemech C, Minnema MC, et al. Phase 1/2 study of daratumumab, lenalidomide, and dexamethasone for relapsed multiple myeloma. Blood. 2016;128:1821–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mateos MV, Dimopoulos MA, Cavo M, Suzuki K, Jakubowiak A, Knop S, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018;378:518–28.

    Article  CAS  PubMed  Google Scholar 

  8. Facon T, Kumar S, Plesner T, Orlowski RZ, Moreau P, Bahlis N, et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N Engl J Med. 2019;380:2104–15.

    Article  CAS  PubMed  Google Scholar 

  9. Phipps C, Chen Y, Gopalakrishnan S, Tan D. Daratumumab and its potential in the treatment of multiple myeloma: overview of the preclinical and clinical development. Therapeutic Adv Hematol. 2015;6:120–7.

    Article  CAS  Google Scholar 

  10. Ghose J, Terrazas C, Viola D, Caserta E, Krishnan A, Hofmeister CC, et al. Daratumumab impairs myeloma cell adhesion mediated drug resistance through CD38 internalization. Blood. 2016;128:4479.

    Article  Google Scholar 

  11. Funaro A, Reinis M, Trubiani O, Santi S, Di Primio R, Malavasi F. CD38 functions are regulated through an internalization step. J Immunol. 1998;160:2238–47.

    CAS  PubMed  Google Scholar 

  12. Pick M, Vainstein V, Goldschmidt N, Lavie D, Libster D, Gural A, et al. Daratumumab resistance is frequent in advanced-stage multiple myeloma patients irrespective of CD38 expression and is related to dismal prognosis. Eur J Haematol. 2018;100:494–501.

    Article  CAS  PubMed  Google Scholar 

  13. Nijhof IS, Groen RW, Lokhorst HM, van Kessel B, Bloem AC, van Velzen J, et al. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab. Leukemia. 2015;29:2039–49.

    Article  CAS  PubMed  Google Scholar 

  14. Oberle A, Brandt A, Alawi M, Langebrake C, Janjetovic S, Wolschke C, et al. Long-term CD38 saturation by daratumumab interferes with diagnostic myeloma cell detection. Haematologica. 2017;102:e368–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adams HC 3rd, Stevenaert F, Krejcik J, Van der Borght K, Smets T, Bald J, et al. High-parameter mass cytometry evaluation of relapsed/refractory multiple myeloma patients treated with daratumumab demonstrates immune modulation as a novel mechanism of action. Cytometry A. 2018;95:279–89.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, Zhang Y, Hughes T, Zhang J, Caligiuri MA, Benson DM, et al. Fratricide of NK cells in daratumumab therapy for multiple myeloma overcome by ex vivo-expanded autologous NK cells. Clin Cancer Res. 2018;24:4006–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lischke T, Heesch K, Schumacher V, Schneider M, Haag F, Koch-Nolte F, et al. CD38 controls the innate immune response against Listeria monocytogenes. Infect Immun. 2013;81:4091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rah SY, Kwak JY, Chung YJ, Kim UH. ADP-ribose/TRPM2-mediated Ca2+ signaling is essential for cytolytic degranulation and antitumor activity of natural killer cells. Sci Rep. 2015;5:9482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mallone R, Funaro A, Zubiaur M, Baj G, Ausiello CM, Tacchetti C, et al. Signaling through CD38 induces NK cell activation. Int Immunol. 2001;13:397–409.

    Article  CAS  PubMed  Google Scholar 

  20. Postigo J, Iglesias M, Cerezo-Wallis D, Rosal-Vela A, Garcia-Rodriguez S, Zubiaur M, et al. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis. PLoS ONE. 2012;7:e33534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deaglio S, Zubiaur M, Gregorini A, Bottarel F, Ausiello CM, Dianzani U, et al. Human CD38 and CD16 are functionally dependent and physically associated in natural killer cells. Blood. 2002;99:2490–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ghose J, Viola D, Terrazas C, Caserta E, Troadec E, Khalife J, et al. Daratumumab induces CD38 internalization and impairs myeloma cell adhesion. Oncoimmunology. 2018;7:e1486948.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang R, Jaw JJ, Stutzman NC, Zou Z, Sun PD. Natural killer cell-produced IFN-gamma and TNF-alpha induce target cell cytolysis through up-regulation of ICAM-1. J Leukoc Biol. 2012;91:299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. MacDonald RJ, Shrimp JH, Jiang H, Zhang L, Lin H, Yen A. Probing the requirement for CD38 in retinoic acid-induced HL-60 cell differentiation with a small molecule dimerizer and genetic knockout. Sci Rep. 2017;7:17406.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Casneuf T, Xu XS, Adams HC 3rd, Axel AE, Chiu C, Khan I, et al. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv. 2017;1:2105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frasca L, Fedele G, Deaglio S, Capuano C, Palazzo R, Vaisitti T, et al. CD38 orchestrates migration, survival, and Th1 immune response of human mature dendritic cells. Blood. 2006;107:2392–9.

    Article  CAS  PubMed  Google Scholar 

  27. Frasca L, Nasso M, Spensieri F, Fedele G, Palazzo R, Malavasi F, et al. IFN-gamma arms human dendritic cells to perform multiple effector functions. J Immunol. 2008;180:1471–81.

    Article  CAS  PubMed  Google Scholar 

  28. Atanackovic D, Yousef S, Shorter C, Tantravahi SK, Steinbach M, Iglesias F, et al. In vivo vaccination effect in multiple myeloma patients treated with the monoclonal antibody isatuximab. Leukemia. 2020;34:317–21.

    Article  PubMed  Google Scholar 

  29. Overdijk MB, Verploegen S, Bogels M, van Egmond M, Lammerts van Bueren JJ, Mutis T, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015;7:311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fatehchand K, McMichael EL, Reader BF, Fang H, Santhanam R, Gautam S, et al. Interferon-gamma promotes antibody-mediated fratricide of acute myeloid leukemia cells. J Biol Chem. 2016;291:25656–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thiel M, Wolfs MJ, Bauer S, Wenning AS, Burckhart T, Schwarz EC, et al. Efficiency of T-cell costimulation by CD80 and CD86 cross-linking correlates with calcium entry. Immunology. 2010;129:28–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Usmani SZ, Khan I, Chiu C, Foureau D, Druhan LJ, Rigby K, et al. Deep sustained response to daratumumab monotherapy associated with T-cell expansion in triple refractory myeloma. Exp Hematol Oncol. 2018;7:3.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hoylman E, Brown A, Perissinotti AJ, Marini BL, Pianko M, Ye JC, et al. Optimal sequence of daratumumab and elotuzumab in relapsed and refractory multiple myeloma. Leuk Lymphoma. 2020;61:691–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dori Triplett, Evelyn Flores, Elizabeth Hartman, and Debbie Flood for administrative support. Research was in part supported by the National Institutes of Health under grant number NIH-2-R01-CA201382 (FP and CCH), in part under NIH-2-R01-CA238429-01 (FP, JS, and XW) and in part by the Steven Gordon and Briskin Family Innovation Grant. We also thank Suzan King and Steve Allen for their support. Research reported in this publication included work performed at the Liquid Tissue Bank, Analytical Cytometry, and Integrative Genomics and Bioinformatics shared resource cores supported by the National Institutes of Health under award number P30CA033572. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

DV, AD, SJF, PJY, JJK, JS, STR, CCH, GM, AK, and FP designed research; DV, AD, MM, EGG, ET, EC, FB, XW, JK, TM, STR, CK, MH, MR, DS, RRM, and TE performed research; DV, AC, LG, JFS, and XW analyzed data; AD, JFS, AK, and FP wrote the manuscript; all authors reviewed the manuscript.

Corresponding authors

Correspondence to Amrita Krishnan or Flavia Pichiorri.

Ethics declarations

Conflict of interest

AK is a consultant for Celgene and Janssen, serves on the speakers’ bureau for SutroBioPharma, zPredicta, Celgene, Amgen, and Takeda, and has stock ownership in Celgene. CCH has received research grants from Takeda & Oncolytics Biotech; research and personal grants from Janssen, BMS, Sanofi, Nektar, and Karyopharm; and personal grants from Imbrium Pharmaceuticals and Oncopeptides, all outside the submitted work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viola, D., Dona, A., Caserta, E. et al. Daratumumab induces mechanisms of immune activation through CD38+ NK cell targeting. Leukemia 35, 189–200 (2021). https://doi.org/10.1038/s41375-020-0810-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0810-4

This article is cited by

Search

Quick links