Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acute lymphoblastic leukemia

Leukemia-induced dysfunctional TIM-3+CD4+ bone marrow T cells increase risk of relapse in pediatric B-precursor ALL patients


Interaction of malignancies with tissue-specific immune cells has gained interest for prognosis and intervention of emerging immunotherapies. We analyzed bone marrow T cells (bmT) as tumor-infiltrating lymphocytes in pediatric precursor-B cell acute lymphoblastic leukemia (ALL). Based on data from 100 patients, we show that ALL is associated with late-stage CD4+ phenotype and loss of early CD8+ T cells. The inhibitory exhaustion marker TIM-3 on CD4+ bmT increased relapse risk (RFS = 94.6/70.3%) confirmed by multivariate analysis. The hazard ratio of TIM-3 expression nearly reached the hazard ratio of MRD (7.1 vs. 8.0) indicating that patients with a high frequency of TIM-3+CD4+ bone marrow T cells at initial diagnosis have a 7.1-fold increased risk to develop ALL relapse. Comparison of wild type primary T cells to CRISPR/Cas9-mediated TIM-3 knockout and TIM-3 overexpression confirmed the negative effect of TIM-3 on T cell responses against ALL. TIM-3+CD4+ bmT are increased in ALL overexpressing CD200, that leads to dysfunctional antileukemic T cell responses. In conclusion, TIM-3-mediated interaction between bmT and leukemia cells is shown as a strong risk factor for relapse in pediatric B-lineage ALL. CD200/TIM-3-signaling, rather than PD-1/PD-L1, is uncovered as a mechanism of T cell dysfunction in ALL with major implication for future immunotherapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Pediatric B-precursor ALL is associated with late stage bone marrow T cell differentiation.
Fig. 2: Expression of exhaustion marker TIM-3 on CD4+ bone marrow T cells is a risk factor for relapse of pediatric B-precursor ALL.
Fig. 3: Leukemia is associated with upregulation of TIM-3 on T cells leading to reduced activation and proliferation potential of T cells.
Fig. 4: ALL-induced upregulation of TIM-3 on CD4+ T cells is mediated by CD200.


  1. 1.

    Moricke A, Zimmermann M, Reiter A, Henze G, Schrauder A, Gadner H, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24:265–84.

    CAS  PubMed  Google Scholar 

  2. 2.

    Ladanyi A, Somlai B, Gilde K, Fejos Z, Gaudi I, Timar J. T-cell activation marker expression on tumor-infiltrating lymphocytes as prognostic factor in cutaneous malignant melanoma. Clin Cancer Res. 2004;10:521–30.

    CAS  PubMed  Google Scholar 

  3. 3.

    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E, et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell. 2015;162:1242–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415:536–41.

    CAS  PubMed  Google Scholar 

  9. 9.

    Mujib S, Jones RB, Lo C, Aidarus N, Clayton K, Sakhdari A, et al. Antigen-independent induction of Tim-3 expression on human T cells by the common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 is associated with proliferation and is dependent on the phosphoinositide 3-kinase pathway. J Immunol. 2012;188:3745–56.

    CAS  PubMed  Google Scholar 

  10. 10.

    Yang ZZ, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ, et al. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest. 2012;122:1271–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Zhu C, Sakuishi K, Xiao S, Sun Z, Zaghouani S, Gu G, et al. An IL-27/NFIL3 signalling axis drives Tim-3 and IL-10 expression and T-cell dysfunction. Nat Commun. 2015;6:6072.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Wiener Z, Kohalmi B, Pocza P, Jeager J, Tolgyesi G, Toth S, et al. TIM-3 is expressed in melanoma cells and is upregulated in TGF-beta stimulated mast cells. J Invest Dermatol. 2007;127:906–14.

    CAS  PubMed  Google Scholar 

  13. 13.

    Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6:1245–52.

    CAS  PubMed  Google Scholar 

  14. 14.

    Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012;13:832–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature. 2015;517:386–90.

    CAS  PubMed  Google Scholar 

  16. 16.

    Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng XX, et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol. 2003;4:1102–10.

    CAS  PubMed  Google Scholar 

  17. 17.

    Sanchez-Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, Sabatos CA, et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol. 2003;4:1093–101.

    CAS  PubMed  Google Scholar 

  18. 18.

    Jin HT, Anderson AC, Tan WG, West EE, Ha SJ, Araki K, et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci USA. 2010;107:14733–8.

    CAS  PubMed  Google Scholar 

  19. 19.

    Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR, et al. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med. 2008;205:2763–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207:2175–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F, et al. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS ONE. 2012;7:e30676.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44:989–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Noviello M, Manfredi F, Ruggiero E, Perini T, Oliveira G, Cortesi F, et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nat Commun. 2019;10:1065.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Goncalves Silva I, Yasinska IM, Sakhnevych SS, Fiedler W, Wellbrock J, Bardelli M, et al. The Tim-3-galectin-9 secretory pathway is involved in the immune escape of human acute myeloid leukemia cells. EBioMedicine. 2017;22:44–57.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hohtari H, Bruck O, Blom S, Turkki R, Sinisalo M, Kovanen PE, et al. Immune cell constitution in bone marrow microenvironment predicts outcome in adult ALL. Leukemia. 2019;33:1570–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Chicaybam L, Barcelos C, Peixoto B, Carneiro M, Limia CG, Redondo P, et al. An efficient electroporation protocol for the genetic modification of mammalian cells. Front Bioeng Biotechnol. 2016;4:99.

    PubMed  Google Scholar 

  27. 27.

    Feucht J, Kayser S, Gorodezki D, Hamieh M, Doring M, Blaeschke F, et al. T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget. 2016;7:76902–19.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Qin H, Ishii K, Nguyen S, Su PP, Burk CR, Kim BH, et al. Murine pre-B-cell ALL induces T-cell dysfunction not fully reversed by introduction of a chimeric antigen receptor. Blood. 2018;132:1899–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Liu L, Chang YJ, Xu LP, Zhang XH, Wang Y, Liu KY, et al. T cell exhaustion characterized by compromised MHC class I and II restricted cytotoxic activity associates with acute B lymphoblastic leukemia relapse after allogeneic hematopoietic stem cell transplantation. Clin Immunol. 2018;190:32–40.

    CAS  PubMed  Google Scholar 

  30. 30.

    Tang R, Rangachari M, Kuchroo VK. Tim-3: A co-receptor with diverse roles in T cell exhaustion and tolerance. Semin Immunol. 2019;42:101302.

    CAS  PubMed  Google Scholar 

  31. 31.

    Pui CH, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33:2938–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wright GJ, Jones M, Puklavec MJ, Brown MH, Barclay AN. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology. 2001;102:173–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ring EK, Markert JM, Gillespie GY, Friedman GK. Checkpoint proteins in pediatric brain and extracranial solid tumors: opportunities for immunotherapy. Clin Cancer Res. 2017;23:342–50.

    CAS  PubMed  Google Scholar 

  34. 34.

    McWhirter JR, Kretz-Rommel A, Saven A, Maruyama T, Potter KN, Mockridge CI, et al. Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Natl Acad Sci USA. 2006;103:1041–6.

    CAS  PubMed  Google Scholar 

  35. 35.

    Stumpfova M, Ratner D, Desciak EB, Eliezri YD, Owens DM. The immunosuppressive surface ligand CD200 augments the metastatic capacity of squamous cell carcinoma. Cancer Res. 2010;70:2962–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Petermann KB, Rozenberg GI, Zedek D, Groben P, McKinnon K, Buehler C, et al. CD200 is induced by ERK and is a potential therapeutic target in melanoma. J Clin Invest. 2007;117:3922–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Palumbo GA, Parrinello N, Fargione G, Cardillo K, Chiarenza A, Berretta S, et al. CD200 expression may help in differential diagnosis between mantle cell lymphoma and B-cell chronic lymphocytic leukemia. Leuk Res. 2009;33:1212–6.

    CAS  PubMed  Google Scholar 

  38. 38.

    Coles SJ, Gilmour MN, Reid R, Knapper S, Burnett AK, Man S, et al. The immunosuppressive ligands PD-L1 and CD200 are linked in AML T-cell immunosuppression: identification of a new immunotherapeutic synapse. Leukemia. 2015;29:1952–4.

    CAS  PubMed  Google Scholar 

  39. 39.

    Coles SJ, Hills RK, Wang EC, Burnett AK, Man S, Darley RL, et al. Expression of CD200 on AML blasts directly suppresses memory T-cell function. Leukemia. 2012;26:2148–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science. 2000;290:1768–71.

    CAS  PubMed  Google Scholar 

  41. 41.

    Jenmalm MC, Cherwinski H, Bowman EP, Phillips JH, Sedgwick JD. Regulation of myeloid cell function through the CD200 receptor. J Immunol. 2006;176:191–9.

    CAS  PubMed  Google Scholar 

Download references


The authors thank the patients and their families for participating in the study. We thank Tanja Weißer, Nicola Habjan and Nadine Stoll for excellent technical assistance. This work was supported by the Elterninitiative Ebersberg, Elterninitiative Intern 3, Bettina Braeu Stiftung, Gesellschaft für KinderKrebsForschung e.V. and Dr. Sepp und Hanne Sturm Gedaechtnisstiftung. S.W. was supported by the Else-Kröner-Fresenius Stiftung and D.S. was supported by the German Cancer Research Center/German Cancer Consortium (DKTK).

Author information




The concept was set up by T.F. Design and approach of experiments was done by F.B. and T.F. Diagnostic characterization and follow-up analyses were performed by M.H. and G.E. Statistics were done by M.Z. RNA sequencing was done by M.R., S.W., and C.K. V.B. provided patient and healthy donor samples. TIM-3 and CD200 experiments were done by F.B., M.L., D.S., S.W., and T.K. Bioinformatics were done by F.R.R. and S.C. Data analysis and manuscript preparation was done by F.B. and T.F. The manuscript was reviewed by all authors.

Corresponding author

Correspondence to Tobias Feuchtinger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blaeschke, F., Willier, S., Stenger, D. et al. Leukemia-induced dysfunctional TIM-3+CD4+ bone marrow T cells increase risk of relapse in pediatric B-precursor ALL patients. Leukemia 34, 2607–2620 (2020).

Download citation

Further reading


Quick links