Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immunotherapy

CD28/4-1BB CD123 CAR T cells in blastic plasmacytoid dendritic cell neoplasm

Abstract

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is associated with a remarkably poor prognosis and with no treatment consensus. The identification of relevant therapeutic targets is challenging. Here, we investigated the immune functions, antileukemia efficacy and safety of CD28/4-1BB CAR T cells targeting CD123 the interleukin (IL)-3 receptor alpha chain which is overexpressed on BPDCN. We demonstrated that both retroviral and lentiviral engineering CD28/4-1BB CD123 CAR T cells exhibit effector functions against BPDCN cells through CD123 antigen recognition and that they efficiently kill BPDCN cell lines and BPDCN-derived PDX cells. In vivo, CD28/4-1BB CD123 CAR T-cell therapy displayed strong efficacy by promoting a decrease of BPDCN blast burden. Furthermore we showed that T cells from BPDCN patient transduced with CD28/4-1BB CD123 CAR successfully eliminate autologous BPDCN blasts in vitro. Finally, we demonstrated in humanized mouse models that these effector CAR T cells exert low or no cytotoxicity against various subsets of normal cells with low CD123 expression, indicating a potentially low on-target/off-tumor toxicity effect. Collectively, our data support the further evaluation for clinical assessment of CD28/4-1BB CD123 CAR T cells in BPDCN neoplasm.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Design and production of CD123 CAR T cells.
Fig. 2: CD123R CAR T cells induced specific cytotoxicity against BPDCN cell lines and BPDCN patient-derived xenograft cells.
Fig. 3: Functional characterization of CD123R CAR T cells in coculture with CD123+ target cells.
Fig. 4: In vivo antitumor activity of CD123L CAR T cells against CAL-1 and PDX.
Fig. 5: Evaluation of CD123 expression in normal cells compared with BPDCN cells.
Fig. 6: Evaluation of toxicity of CD123L CAR T cells against cells expressing CD123 at a low level.
Fig. 7: CD123L CAR T cells from a patient with BPDCN and induction of specific cytotoxicity against autologous BPDCN blasts.

References

  1. 1.

    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumors of haematopoeitic and lymphoid tissues. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumors of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 98–106.

  2. 2.

    Simonyan D, Gagnon MP, Duchesne T, Roos-Weil A. Effects of a telehealth programme using mobile data transmission on primary healthcare utilisation among children in Bamako, Mali. J Telemed Telecare. 2013;19:302–6.

    PubMed  Google Scholar 

  3. 3.

    Pagano L, Valentini CG, Grammatico S, Pulsoni A. Blastic plasmacytoid dendritic cell neoplasm: diagnostic criteria and therapeutical approaches. Br J Haematol. 2016;174:188–202.

    CAS  PubMed  Google Scholar 

  4. 4.

    Kharfan-Dabaja MA, Lazarus HM, Nishihori T, Mahfouz RA, Hamadani M. Diagnostic and therapeutic advances in blastic plasmacytoid dendritic cell neoplasm: a focus on hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2013;19:1006–12.

    CAS  PubMed  Google Scholar 

  5. 5.

    Pemmaraju N, Lane AA, Sweet KL, Stein AS, Vasu S, Blum W, et al. Tagraxofusp in blastic plasmacytoid dendritic-cell neoplasm. N Engl J Med. 2019;380:1628–37.

    CAS  PubMed  Google Scholar 

  6. 6.

    Taussig DC, Pearce DJ, Simpson C, Rohatiner AZ, Lister TA, Kelly G, et al. Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood. 2005;106:4086–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Garnache-Ottou F, Feuillard J, Ferrand C, Biichle S, Trimoreau F, Seilles E, et al. Extended diagnostic criteria for plasmacytoid dendritic cell leukaemia. Br J Haematol. 2009;145:624–36.

    CAS  PubMed  Google Scholar 

  8. 8.

    Broughton SE, Dhagat U, Hercus TR, Nero TL, Grimbaldeston MA, Bonder CS, et al. The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol Rev. 2012;250:277–302.

    PubMed  Google Scholar 

  9. 9.

    Hara T, Miyajima A. Function and signal transduction mediated by the interleukin 3 receptor system in hematopoiesis. Stem Cells. 1996;14:605–18.

    CAS  PubMed  Google Scholar 

  10. 10.

    Testa U, Pelosi E, Frankel A. CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomark Res. 2014;2:4.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Ehninger A, Kramer M, Rollig C, Thiede C, Bornhauser M, von Bonin M, et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J. 2014;4:e218.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Vergez F, Green AS, Tamburini J, Sarry JE, Gaillard B, Cornillet-Lefebvre P, et al. High levels of CD34+CD38low/-CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica. 2011;96:1792–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    CAS  PubMed  Google Scholar 

  14. 14.

    Angelot-Delettre F, Roggy A, Frankel AE, Lamarthee B, Seilles E, Biichle S, et al. In vivo and in vitro sensitivity of blastic plasmacytoid dendritic cell neoplasm to SL-401, an interleukin-3 receptor targeted biologic agent. Haematologica. 2015;100:223–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Frankel AE, Woo JH, Ahn C, Pemmaraju N, Medeiros BC, Carraway HE, et al. Activity of SL-401, a targeted therapy directed to interleukin-3 receptor, in blastic plasmacytoid dendritic cell neoplasm patients. Blood. 2014;124:385–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33:540–9.

    CAS  PubMed  Google Scholar 

  18. 18.

    June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X, Budde LE, et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood. 2013;122:3138–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Gill S, Tasian SK, Ruella M, Shestova O, Li Y, Porter DL, et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood. 2014;123:2343–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Thokala R, Olivares S, Mi T, Maiti S, Deniger D, Huls H, et al. Redirecting specificity of T cells using the Sleeping Beauty system to express chimeric antigen receptors by mix-and-matching of VL and VH domains targeting CD123+ tumors. PloS ONE. 2016;11:e0159477.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Cummins KD, Gill S. Anti-CD123 chimeric antigen receptor T-cells (CART): an evolving treatment strategy for hematological malignancies, and a potential ace-in-the-hole against antigen-negative relapse. Leuk Lymphoma. 2018;59:1539–53.

    CAS  PubMed  Google Scholar 

  23. 23.

    Tettamanti S, Marin V, Pizzitola I, Magnani CF, Giordano Attianese GM, Cribioli E, et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br J Haematol. 2013;161:389–401.

    CAS  PubMed  Google Scholar 

  24. 24.

    Tasian SK, Kenderian SS, Shen F, Ruella M, Shestova O, Kozlowski M, et al. Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood. 2017;129:2395–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Cai T, Galetto R, Gouble A, Smith J, Cavazos A, Konoplev S, et al. Pre-clinical studies of anti-CD123 CAR-T cells for the treatment of blastic plasmacytoid dendritic cell neoplasm (BPDCN). Blood. 2016;128:4039.

    Google Scholar 

  26. 26.

    Philippe L, Ceroi A, Bole-Richard E, Jenvrin A, Biichle S, Perrin S, et al. Bortezomib as a new therapeutic approach for blastic plasmacytoid dendritic cell neoplasm. Haematologica. 2017;102:1861–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Pagano L, Valentini CG, Pulsoni A, Fisogni S, Carluccio P, Mannelli F, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: an Italian multicenter study. Haematologica. 2013;98:239–46.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Wang J, Jensen M, Lin Y, Sui X, Chen E, Lindgren CG, et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther. 2007;18:712–25.

    CAS  PubMed  Google Scholar 

  29. 29.

    Stoiber S, Cadilha BL, Benmebarek MR, Lesch S, Endres S, Kobold S. Limitations in the design of chimeric antigen receptors for cancer therapy. Cells. 2019;8:472.

  30. 30.

    Gomes-Silva D, Mukherjee M, Srinivasan M, Krenciute G, Dakhova O, Zheng Y, et al. Tonic 4-1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell Rep. 2017;21:17–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5:177ra38.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.

    CAS  PubMed  Google Scholar 

  33. 33.

    Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378:449–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Kawalekar OU, O’Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD Jr, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44:712.

    CAS  PubMed  Google Scholar 

  35. 35.

    Feucht J, Sun J, Eyquem J, Ho YJ, Zhao Z, Leibold J, et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med. 2019;25:82–8.

    CAS  PubMed  Google Scholar 

  36. 36.

    Drent E, Poels R, Ruiter R, van de Donk N, Zweegman S, Yuan H, et al. Combined CD28 and 4-1BB costimulation potentiates affinity-tuned chimeric antigen receptor-engineered T cells. Clin Cancer Res. 2019;25:4014–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA. 2005;102:9571–6.

    CAS  PubMed  Google Scholar 

  38. 38.

    Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med. 2009;15:808–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17:1290–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Li F, Sutherland MK, Yu C, Walter RB, Westendorf L, Valliere-Douglass J, et al. Characterization of SGN-CD123A, a potent CD123-directed antibody-drug conjugate for acute myeloid leukemia. Mol Cancer Ther. 2018;17:554–64.

    CAS  PubMed  Google Scholar 

  41. 41.

    Xie LH, Biondo M, Busfield SJ, Arruda A, Yang X, Vairo G, et al. CD123 target validation and preclinical evaluation of ADCC activity of anti-CD123 antibody CSL362 in combination with NKs from AML patients in remission. Blood Cancer J. 2017;7:e567.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Kovtun Y, Jones GE, Adams S, Harvey L, Audette CA, Wilhelm A, et al. A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Adv. 2018;2:848–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, Lassailly F, Tettamanti S, Spinelli O, et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia. 2014;28:1596–605.

    CAS  PubMed  Google Scholar 

  44. 44.

    Chu SY, Pong E, Chen H, Phung S, Chan EW, Endo NA, et al. Immunotherapy with long-lived anti-CD123 × anti-CD3 bispecific antibodies stimulates potent T cell-mediated killing of human AML cell lines and of CD123+ cells in monkeys: a potential therapy for acute myelogenous leukemia. Blood. 2014;124:2316.

    Google Scholar 

  45. 45.

    Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ, Perazzelli J, et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest. 2016;126:3814–26.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Al-Hussaini M, Rettig MP, Ritchey JK, Karpova D, Uy GL, Eissenberg LG, et al. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood. 2016;127:122–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Togami K, Pastika T, Stephansky J, Ghandi M, Christie AL, Jones KL, et al. DNA methyltransferase inhibition overcomes diphthamide pathway deficiencies underlying CD123-targeted treatment resistance. J Clin Invest. 2019;129:5005–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain MCAR. T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24:731–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24:739–48.

    CAS  PubMed  Google Scholar 

  50. 50.

    Bonini C, Bondanza A, Perna SK, Kaneko S, Traversari C, Ciceri F, et al. The suicide gene therapy challenge: how to improve a successful gene therapy approach. Mol Ther. 2007;15:1248–52.

    CAS  PubMed  Google Scholar 

  51. 51.

    Warda W, Larosa F, Neto Da Rocha M, Trad R, Deconinck E, Fajloun Z, et al. CML hematopoietic stem cells expressing IL1RAP can be targeted by chimeric antigen receptor-engineered T cells. Cancer Res. 2019;79:663–75.

    CAS  PubMed  Google Scholar 

  52. 52.

    Zhou X, Di Stasi A, Tey SK, Krance RA, Martinez C, Leung KS, et al. Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood. 2014;123:3895–905.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the animal technicians for their expertise in animal care and management. We thank Franck Monnien and the Biobank BB-0033-00024 “Tumorothèque Régionale de Franche-Comté (TRFC)” for providing tissue samples, Diaclone for collaboration for antibodies production, and Stemline for SL-401 providing. This study was supported by Programme de Recherche Translationnelle INCa (PRTK N°PRT-K-15-175), by the MiMedI project funded by BPI France (Grant No. DOS0060162/00) and the European Union through the European Regional Development Fund of the Region Bourgogne-Franche-Comte (Grant No. FC0013440), by the Region Bourgogne-Franche-Comté (IVIS Lumina Series III bioimager to P.S. #2016-0196), by the National Cancer Institute (INCa) DM/FC/sl/RT07 grant to CR and the Association Laurette Fugain (12/09) to EM.

Author information

Affiliations

Authors

Contributions

EBR, MF, SB, JMC, FA, FT, MP, and AJ performed the experiments; EBR, JMC, MF, and SB analyzed data; EBR and MF performed statistical analysis; FB, JRP, and KYHWY assisted with in vivo experiments; FR, TP, CM, and SVD provided help with immunohistochemistry and transcriptomic analysis. TP, CR, EM, FF, EB, and MM provided patient samples and expertise. FR, CM, SVD, YG, PS, WW, MD, PLD, ML, JC, DB, MP, ED, ED, PS, CF, and FAD provided guidance and expertise in their respective areas of study. EBR, MF, and FGO wrote the manuscript, and FGO, OA, ED, PS, and FAD commented on the manuscript. FGO, FAD, and OA supervised the research. All authors provided input and edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Francine Garnache-Ottou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bôle-Richard, E., Fredon, M., Biichlé, S. et al. CD28/4-1BB CD123 CAR T cells in blastic plasmacytoid dendritic cell neoplasm. Leukemia 34, 3228–3241 (2020). https://doi.org/10.1038/s41375-020-0777-1

Download citation

Further reading

Search

Quick links